Advertisement

Strahlentherapie und Onkologie

, Volume 188, Issue 3, pp 216–225 | Cite as

Adjuvant intensity-modulated proton therapy in malignant pleural mesothelioma

A comparison with intensity-modulated radiotherapy and a spot size variation assessment
  • S. Lorentini
  • M. Amichetti
  • L. Spiazzi
  • S. Tonoli
  • S.M. Magrini
  • F. Fellin
  • M. Schwarz
Original article

Abstract

Purpose

Intensity-modulated radiation therapy (IMRT) is the state-of-the-art treatment for patients with malignant pleural mesothelioma (MPM). The goal of this work was to assess whether intensity-modulated proton therapy (IMPT) could further improve the dosimetric results allowed by IMRT.

Patients and methods

We re-planned 7 MPM cases using both photons and protons, by carrying out IMRT and IMPT plans. For both techniques, conventional dose comparisons and normal tissue complication probability (NTCP) analysis were performed. In 3 cases, additional IMPT plans were generated with different beam dimensions.

Results

IMPT allowed a slight improvement in target coverage and clear advantages in dose conformity (p < 0.001) and dose homogeneity (p = 0.01). Better organ at risk (OAR) sparing was obtained with IMPT, in particular for the liver (Dmean reduction of 9.5 Gy, p = 0.001) and ipsilateral kidney (V20 reduction of 58%, p = 0.001), together with a very large reduction of mean dose for the contralateral lung (0.2 Gy vs 6.1 Gy, p = 0.0001). NTCP values for the liver showed a systematic superiority of IMPT with respect to IMRT for both the esophagus (average NTCP 14% vs. 30.5%) and the ipsilateral kidney (p = 0.001). Concerning plans obtained with different spot dimensions, a slight loss of target coverage was observed along with sigma increase, while maintaining OAR irradiation always under planning constraints.

Conclusion

Results suggest that IMPT allows better OAR sparing with respect to IMRT, mainly for the liver, ipsilateral kidney, and contralateral lung. The use of a spot dimension larger than 3 × 3 mm (up to 9 × 9 mm) does not compromise dosimetric results and allows a shorter delivery time.

Keywords

Intensity-modulated proton therapy Intensity-modulated radiation therapy Mesothelioma Spot size NTCP analysis 

Adjuvante intensitätsmodulierte Protonentherapie bei malignem Pleuramesotheliom

Ein Vergleich mit intensitätsmodulierter Strahlentherapie und eine Bewertung der Variation der Fokusgrößen

Zusammenfassung

Ziel

Die intensitätsmodulierte Strahlentherapie (IMRT) erhöht die therapeutische Dosis auf die Pleurahöhle und reduziert die Dosis auf die Risikoorgane (OAR) bei Patienten mit malignem Pleuramesotheliom (MPM). Ziel dieser Arbeit ist zu prüfen, ob Protonen, als intensitätsmodulierte Protonentherapie (IMPT) angewendet, die dosimetrischen Ergebnisse im Vergleich zu einer IMRT weiter verbessern können.

Patienten und Methoden

Wir haben für 7 MPM-Fälle jeweils mit Photonen und Protonen, unter Verwendung von IMRT und IMPT, Bestrahlungspläne wiedererstellt. Für beide Verfahren haben wir eine Analyse der Normalgewebskomplikationen (NTCP) durchgeführt. In 3 Fällen wurden zusätzliche IMPT-Pläne mit geänderter Fokusgröße erstellt.

Ergebnisse

Die IMPT erlaubt eine leichte Verbesserung der Zielvolumenabdeckung und klare Vorteile in der Konformität (p < 0,001) sowie in der Homogenität (p = 0,01). Durch IMPT wurde eine bessere Schonung der OAR erreicht, im Einzelnen für die Leber mit einer Reduktion der Dmean auf 9,5 Gy, (p = 0,001), für die ipsilaterale Niere (58%-Reduktion von V20; p = 0,001) sowie eine starke Reduktion der mittleren Dosis der kontralateralen Lunge (0,2 Gy vs. 6,1 Gy; p = 0,0001). NTCP-Werte für die Leber zeigten eine systematische Überlegenheit der IMPT gegenüber der IMRT, Ähnliches für die Speiseröhre (Durchschnitts-NTCP 14% vs. 30,5%) und die ipsilaterale Niere (p = 0,001). Bezüglich der Pläne mit anderer Fokusgröße zeigt sich ein leichter Verlust der Zielvolumenabdeckung zusammen mit einer Sigma-Erhöhung. Die vorgegebenen Dosisbegrenzungen für die Risikoorgane wurden immer eingehalten.

Schlussfolgerungen

Die Ergebnisse zeigen, dass IMPT eine bessere Schonung der OAR ermöglicht, vor allem für Leber, ipsilaterale Niere und kontralaterale Lunge. Die Verwendung von Fokusgrößen größer als 3 × 3 mm (bis 9 × 9 mm) gefährdet nicht die dosimetrischen Ergebnisse und ermöglicht eine kürzere Bestrahlungszeit.

Schlüsselwörter

Intensitätsmodulierte Protonentherapie Intensitätsmodulierte Strahlentherapie Mesotheliom Fokusgröße NTCP-Analyse 

Notes

Acknowledgments

We thank Valentina Piffer (ATreP – Trento) for her language editing of the manuscript.

Conflict of interest

The corresponding author states that there are no conflicts of interest.

References

  1. 1.
    Ahamad A, Stevens CW, Smythe WR et al (2003) Intensity-modulated radiation therapy: a novel approach to the management of malignant pleural mesothelioma. Int J Radiat Oncol Biol Phys 55:768–775PubMedCrossRefGoogle Scholar
  2. 2.
    Alber M, Birkner M, Laub W et al (2000) Hyperion: an integrated IMRT planning tool. In: Schlegel W, Bortfeld T (eds) Proceedings of 13th International Conference on the Use of Computers in Radiation Therapy. Springer, Heidelberg, Germany, pp 46–48Google Scholar
  3. 3.
    Allen AM, Czerminska M, Janne PA et al (2006) Fatal pneumonitis associated with intensity-modulated radiation therapy for mesothelioma. Int J Radiat Oncol Biol Phys 65:640–645PubMedCrossRefGoogle Scholar
  4. 4.
    Allen AM, Schofield D, Hacker F et al (2007) Restricted field IMRT dramatically enhances IMRT planning for mesothelioma. Int J Radiat Oncol Biol Phys 69:1587–1592PubMedCrossRefGoogle Scholar
  5. 5.
    Allen AM, Den R, Wong JS et al (2007) Influence of radiotherapy technique and dose on patterns of failure for mesothelioma patients after extrapleural. Int J Radiat Oncol Biol Phys 68:1366–1374PubMedCrossRefGoogle Scholar
  6. 6.
    Baldini EH, Recht A, Strauss GM et al (1997) Patterns of failure after trimodality therapy for malignant pleural mesothelioma. Ann Thorac Surg 63:334–338PubMedCrossRefGoogle Scholar
  7. 7.
    Belderbos J, Heemsbergen W, Hoogeman M et al (2005) Acute esophageal toxicity in non-small cell lung cancer patients after high dose conformal radiotherapy. Radiother Oncol 75:157–164PubMedCrossRefGoogle Scholar
  8. 8.
    Buduhan G, Menon S, Aye R et al (2009) Trimodality therapy for malignant pleural mesothelioma. Ann Thorac Surg 88:870–876PubMedCrossRefGoogle Scholar
  9. 9.
    Dessy F, Linthout N, Gillis S, Closset M (2011) IBA proton pencil beam scanning: validation. Radiother Oncol 99(Supp1):S529CrossRefGoogle Scholar
  10. 10.
    Dawson LA, Normolle D, Balter JM et al (2002) Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys 53:810–821PubMedCrossRefGoogle Scholar
  11. 11.
    Dhalluin X, Scherpereel A (2010) Treatment of malignant pleural mesothelioma: current status and future directions. Monaldi Arch Chest Dis 73:79–85PubMedGoogle Scholar
  12. 12.
    Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122PubMedCrossRefGoogle Scholar
  13. 13.
    Forster KM, Smythe WR, Starkschall G et al (2003) Intensity-modulated radiotherapy following extrapleural pneumonectomy for the treatment of malignant mesothelioma: clinical implementation. Int J Radiat Oncol Biol Phys 55:606–616PubMedCrossRefGoogle Scholar
  14. 14.
    Haber SE, Haber JM (2010) Malignant mesothelioma: a clinical study of 238 cases. Ind Health 49:166–172PubMedCrossRefGoogle Scholar
  15. 15.
    Hentschel B, Oehler W, Strauss D et al (2011) Definition of the CTV prostate in CT and MRI by using CT-MRI image fusion in IMRT planning for prostate cancer. Strahlenther Onkol 187:183–190PubMedCrossRefGoogle Scholar
  16. 16.
    Hillbrand M, Georg D (2010) Assessing a set of optimal user interface parameters for intensity-modulated proton therapy planning. J Appl Clin Med Phys 11:93–104Google Scholar
  17. 17.
    Inoue T, Oh RJ, Shiomi H (2011) New approach for treatment of vertebral metastases using intensity-modulated radiotherapy. Strahlenther Onkol 187:108–113PubMedCrossRefGoogle Scholar
  18. 18.
    Jeleń U, Alber M (2007) A finite size pencil beam algorithm for IMRT dose optimization: density corrections. Phys Med Biol 52:617–633PubMedCrossRefGoogle Scholar
  19. 19.
    Krayenbuehl J, Oertel S, Davis JB, Ciernik IF (2007) Combined photon and electron three-dimensional conformal versus intensity-modulated radiotherapy with integrated boost for adjuvant treatment of malignant pleural mesothelioma after pleuropneumonectomy. Int J Radiat Oncol Biol Phys 69:1593–1599PubMedCrossRefGoogle Scholar
  20. 20.
    Krayenbuehl J, Hartmann M, Lomax AJ et al (2010) Proton therapy for malignant pleural mesothelioma after extrapleural pleuropneumonectomy. Int J Radiat Oncol Biol Phys 78:628–634PubMedCrossRefGoogle Scholar
  21. 21.
    Kristensen CA, Nøttrup TJ, Berthelsen AK et al (2009) Pulmonary toxicity following IMRT after extrapleural pneumonectomy form malignant pleural mesothelioma. Radiother Oncol 92:96–99PubMedCrossRefGoogle Scholar
  22. 22.
    Lomax A (1999) Intensity modulation methods for proton radiotherapy. Phys Med Biol 44:185–206PubMedCrossRefGoogle Scholar
  23. 23.
    Lucchi M, Chella A, Melfi F et al (2007) A phase II study of intrapleural immunochemotherapy, pleurectomy/decortication, radiotherapy, systemic chemotherapy, and long-term subcutaneous IL-2 in stage II–III malignant pleural mesothelioma. 31:229–234 (editorial comment 234–235)Google Scholar
  24. 24.
    Marks LB, Bentzen SM, Deasy JO et al (2010) Radiation dose–volume effects in the lung. Int J Radiat Oncol Biol Phys 73:70–76CrossRefGoogle Scholar
  25. 25.
    Miles EF, Larrier NA, Kelsey CR et al (2008) Intensity-modulated radiotherapy for resected mesothelioma: the Duke experience. Int J Radiat Oncol Biol Phys 71:1143–1150PubMedCrossRefGoogle Scholar
  26. 26.
    Mirabelli D, Cavone D, Merler E et al (2010) Non-occupational exposure to asbestos and malignant mesothelioma in the Italian National Registry of Mesotheliomas. Occup Environ Med 67:792–794PubMedCrossRefGoogle Scholar
  27. 27.
    Münter MW, Nill S, Thilmann C et al (2003) Stereotactic intensity-modulated radiation therapy (IMRT) and inverse treatment planning for advanced pleural mesothelioma. Feasibility and initial results. Strahlenther Onkol 179:535–541PubMedCrossRefGoogle Scholar
  28. 28.
    Pinkawa M, Piroth MD, Holy R et al (2011) Combination of dose escalation with technological advances (intensity-modulated and image-guided radiotherapy) is not associated with increased morbidity for patients with prostate cancer. Strahlenther Onkol 187:479–484PubMedCrossRefGoogle Scholar
  29. 29.
    Pinto C, Ardizzoni A, Betta PG et al (2011) Expert opinions of the First Italian Consensus Conference on the management of malignant pleural mesothelioma. Am J Clin Oncol 34:99–109PubMedCrossRefGoogle Scholar
  30. 30.
    Rice DC, Craig WS, Correa AM (2007) Outcomes after extrapleural pneumonectomy and intensity-modulated radiation therapy for malignant pleural mesothelioma. Ann Thorac Surg 84:1685–1693PubMedCrossRefGoogle Scholar
  31. 31.
    Rice DC, Smythe WR, Liao Z et al (2007) Dose-dependent pulmonary toxicity after postoperative intensity-modulated radiotherapy for malignant pleural mesothelioma. Int J Radiat Oncol Biol Phys 69:350–357PubMedCrossRefGoogle Scholar
  32. 32.
    Rusch VW, Rosenzweig K, Venkatraman E et al (2001) A phase II trial of surgical resection and adjuvant high-dose hemitoracic radiation for malignant pleural mesothelioma. J Thorac Cardiovasc Surg 122:788–795PubMedCrossRefGoogle Scholar
  33. 33.
    Scorsetti M, Bignardi M, Clivio A et al (2010) Volumetric modulation arc radiotherapy compared with static gantry intensity-modulated radiotherapy for malignant pleural mesothelioma tumor: a feasibility study. Int J Radiat Oncol Biol Phys 77:942–349PubMedCrossRefGoogle Scholar
  34. 34.
    Soukup M, Fippel M, Alber M (2005) A pencil beam algorithm for intensity modulated proton therapy derived from Monte-Carlo simulations. Phys Med Biol 50:5089–5104PubMedCrossRefGoogle Scholar
  35. 35.
    Sterzing F, Sroka-Perez G, Schubert K et al (2008) Evaluating target coverage and normal tissue sparing in the adjuvant radiotherapy of malignant pleural mesothelioma: helical tomotherapy compared with step-and-shoot IMRT. Radiother Oncol 86:251–257PubMedCrossRefGoogle Scholar
  36. 36.
    Sterzing F, Schubert K, Sroka-Perez G et al (2008) Helical tomotherapy. Experiences of the first 150 patients in Heidelberg. Strahlenther Onkol 184:8–14PubMedCrossRefGoogle Scholar
  37. 37.
    Stevens CW, Forster K, Zhu X et al (2005) Excellent local control and survival after extrapleural pneumonectomy and IMRT for mesothelioma. Int J Radit Oncol Biol Phys 63:103–104CrossRefGoogle Scholar
  38. 38.
    Stieler F, Wolff D, Bauer L et al (2011) Reirradiation of spinal column metastases: comparison of several treatment techniques and dosimetric validation for the use of VMAT. Strahlenther Onkol 187:406–415PubMedCrossRefGoogle Scholar
  39. 39.
    Straif K, Benbrahim-Tallaa L, Baan R et al (2009) A review of human carcinogens – part C: metals, arsenic, dusts, and fibres. Lancet Oncol 10:453–454PubMedCrossRefGoogle Scholar
  40. 40.
    Tonoli S, Vitali P, Scotti V et al (2011) Adjuvant radiotherapy after extrapleural pneumonectomy for mesothelioma. Prospective analysis of a multi-institutional series. Radiother Onkol 101:311–315CrossRefGoogle Scholar
  41. 41.
    Tsao AS, Wistuba I, Roth JA, Kindler HL (2009) Malignant pleural mesothelioma. J Clin Oncol 27:2081–2090PubMedCrossRefGoogle Scholar
  42. 42.
    Vandenbroucke E, Praet M, Vermaelen K et al (2009) Trimodality treatment of early stage malignant pleural mesothelioma (MPM): a single institution experience. J Thorac Oncol 4:S778CrossRefGoogle Scholar
  43. 43.
    Xu ZY, Liang SX, Zhu J et al (2006) Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma. Int J Radiat Oncol Biol Phys 65:189–195PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2012

Authors and Affiliations

  • S. Lorentini
    • 1
    • 2
  • M. Amichetti
    • 1
  • L. Spiazzi
    • 3
  • S. Tonoli
    • 4
  • S.M. Magrini
    • 4
  • F. Fellin
    • 1
  • M. Schwarz
    • 1
  1. 1.ATreP – Agenzia Provinciale per la ProtonterapiaTrentoItaly
  2. 2.Medical Physics SchoolUniversity of PadovaPadovaItaly
  3. 3.Medical Physics DepartmentBrescia HospitalBresciaItaly
  4. 4.Radiation Oncology DepartmentBrescia HospitalBresciaItaly

Personalised recommendations