Strahlentherapie und Onkologie

, Volume 187, Issue 2, pp 127–134 | Cite as

Omega-3 Fatty Acid Supplementation in Cancer Therapy

Does Eicosapentanoic Acid Influence the Radiosensitivity of Tumor Cells?
  • Katrin Manda
  • Stephan Kriesen
  • Guido Hildebrandt
  • Rainer Fietkau
  • Gunther Klautke
Original Article

Abstract

Purpose:

The aim of this study was to evaluate whether the omega-3 polyunsaturated fatty acid cis-5,8,11,14,17-eicosapentanoic acid (EPA) can enhance the radiosensitivity of different human tumor cell lines.

Materials and Methods:

Colon adenocarcinoma cells HT-29, and two glioblastoma multiforme tumor cells T98G and U251 were cultured under standard conditions. Cell growth was observed during administration with different concentrations of EPA, using it as the free fatty acid dissolved in ethanol or bound to bovine serum albumin. To investigate the influence of EPA (free and bound) on radiosensitivity, tumor cells were pretreated 30 minutes or 24 hours prior to irradiation with the fatty acid. Cell survival was measured by colony-forming assays.

Results:

When combined with irradiation, incubation with EPA was found to result in enhanced radiosensitivity with substantial variation: while there was strong radiosensitization for HT-29 and U251 cells, almost no effect for T98G cells was observed. A marked radiosensitization was clearly dependent on the treatment schedule.

Conclusion:

The observations suggest that EPA is not only a nutritional adjuvant but also may be a potential candidate to enhance the efficacy of irradiation on human cancer cells.

Key Words

n-3 PUFA Eicosapentanoic acid EPA Membrane Lipid peroxidation 

Omega-3-Fettsäuren in der Krebstherapie: Beeinflusst Eicosapentaensäure die Strahlensensibilität humaner Tumorzellen?

Zusammenfassung

Ziel:

In der vorliegenden Arbeit wurde geprüft, ob die polyungesättigte Omega-3-Fettsäure cis-5,8,11,14,17-Eicosapentaensäure (EPA) die Strahlensensibilität verschiedener humaner Tumorzelllinien erhöhen kann.

Methodik:

Zellen eines kolorektalen Adenokarzinoms (HT-29) sowie zweier Glioblastome (T98G und U251) wurden unter Standardbedingungen kultiviert. Um den Einfluss von EPA auf das Wachstum der Zellen zu ermitteln, wurden diese verschiedenen EPAKonzentrationen ausgesetzt. Dabei erfolgte die Zugabe von EPA entweder als freie Fettsäure (gelöst in Ethanol) oder gebunden an Albumin. Zur Untersuchung der Wirkung von EPA (frei und gebunden) auf die Strahlensensibilität der Tumorzellen wurden die Zellen 30 min bzw. 24 h vor der Bestrahlung mit der Fettsäure behandelt und das Zellüberleben anhand von Koloniebildungstests ermittelt.

Ergebnisse:

Die zusätzliche Behandlung der Zellen mit EPA vor der Bestrahlung resultierte in einer unterschiedlich stark ausgeprägten Erhöhung der Radiosensitivität der Tumorzellen: Während für die HT-29- and U251-Zellen eine deutliche Strahlensensibilisierung nachweisbar war, konnte bei den T98G-Zellen kein Effekt verzeichnet werden. Die Strahlensensibilisierung war abhängig vom Zeitpunkt der EPA-Zugabe.

Zusammenfassung:

Die erhaltenen Ergebnisse zeigen, dass die Omega-3-Fettsäure EPA in der Tumortherapie nicht nur als Nahrungsergänzungsmittel von Bedeutung ist, sondern möglicherweise auch zur Wirkungssteigerung der Bestrahlung auf Tumorzellen beitragen kann.

Schlüsselwörter

n-3 PUFA Eicosapentaensäure EPA Membran Lipidperoxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allred CD, Talbert DR, Southard RC, et al. PPAR gamma1 as a molecular target of eicosapentaenoic acid in human colon cancer (HT-29) cells. J Nutr 2008;138:250–6.PubMedGoogle Scholar
  2. 2.
    Argiles JM. Cancer-associated malnutrition. Eur J Oncol Nurs 2005;9(Suppl 2):S39–50.CrossRefGoogle Scholar
  3. 3.
    Bathen TF, Holmgren K, Lundemo AG, et al. Omega-3 fatty acids suppress growth of SW620 human colon cancer xenografts in nude mice. Anticancer Res 2008;28:3717–23.PubMedGoogle Scholar
  4. 4.
    Barzan D, Maier P, Zeller WJ, et al. Overexpression of caveolin-1 in lymphoblastoid TK6 cells enhances proliferation after irradiation with clinically relevant doses. Strahlenther Onkol 2010;186:99–106.CrossRefPubMedGoogle Scholar
  5. 5.
    Bartkowiak D, Stempfhuber M, Wiegel T, et al. Radiation- and chemoinduced multidrug resistance in colon carcinoma cells. Strahlenther Onkol 2009;185:815–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Baumann M, Krause M, Zips D, et al. Molecular targeting in radiotherapy of lung cancer. Lung Cancer 2004;45(Suppl 2):S187–97.CrossRefGoogle Scholar
  7. 7.
    Beck SA, Smith KL, Tisdale MJ. Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover. Cancer Res 1991;51:6089–93.PubMedGoogle Scholar
  8. 8.
    Black HS, Rhodes LE. The potential of omega-3 fatty acids in the prevention of non-melanoma skin cancer. Cancer Detect Prev 2006;30:224–32.CrossRefPubMedGoogle Scholar
  9. 9.
    Bougnoux P. N-3 polyunsaturated fatty acids and cancer. Curr Opin Clin Nutr Metab Care 1999;2: 121–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Calonghi N, Cappadone C, Pagnotta E, et al. 9-hydroxystearic acid upregulates p21(WAF1) in HT29 cancer cells. Biochem Biophys Res Commun 2004;314:138–42.CrossRefPubMedGoogle Scholar
  11. 11.
    Calonghi N, Pagnotta E, Parolin C, et al. Modulation of apoptotic signalling by 9-hydroxystearic acid in osteosarcoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2007;1771:139–46.Google Scholar
  12. 12.
    Calonghi N, Pagnotta E, Parolin C, et al. 9-hydroxystearic acid interferes with EGF signalling in a human colon adenocarcinoma. Biochem Biophys Res Commun 2006;342:585–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Calviello G, Palozza P, Franceschelli P, et al. Low-dose eicosapentaenoic or docosahexaenoic acid administration modifies fatty acid composition and does not affect susceptibility to oxidative stress in rat erythrocytes and tissues. Lipids 1997;32:1075–83.CrossRefPubMedGoogle Scholar
  14. 14.
    Chang CT, Patel P, Kang N, et al. Eicosapentaenoic-acid-derived isoprostanes: synthesis and discovery of two major isoprostanes. Bioorg Med Chem 2008;18:5523–7.CrossRefGoogle Scholar
  15. 15.
    Chapkin RS, McMurray DN, Davidson LA, et al. Bioactive dietary long-chain fatty acids: emerging mechanisms of action. Br J Nutr 2008;100:1152–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Cheeseman KH. Mechanisms and effects of lipid peroxidation. Mol Aspects Med 1993;14:191–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Chiu LC, Wan JM. Induction of apoptosis in HL-60 cells by eicosapentaenoic acid (EPA) is associated with downregulation of bcl-2 expression. Cancer Lett 1999;145:17–27.CrossRefPubMedGoogle Scholar
  18. 18.
    Clarke RG, Lund EK, Latham P, et al. Effect of eicosapentaenoic acid on the proliferation and incidence of apoptosis in the colorectal cell line HT29. Lipids 1999;34:1287–95.CrossRefPubMedGoogle Scholar
  19. 19.
    Colas S, Paon L, Denis F, et al. Enhanced radiosensitivity of rat autochthonous mammary tumors by dietary docosahexaenoic acid. Int J Cancer 2004;109:449–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Colquhoun A. Mechanisms of action of eicosapentaenoic acid in bladder cancer cells in vitro: alterations in mitochondrial metabolism, reactive oxygen species generation and apoptosis induction. J Urol 2009;181:1885–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Colquhoun A, Schumacher RI. gamma-linolenic acid and eicosapentaenoic acid induce modifications in mitochondrial metabolism, reactive oxygen species generation, lipid peroxidation and apoptosis in Walker 256 rat carcinosarcoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2001;1533:207–19.Google Scholar
  22. 22.
    Das UN. gamma-linolenic acid therapy of human gliomas – a review of in vitro, in vivo, and clinical studies. Med Sci Monitor 2007;13:RA119–31.Google Scholar
  23. 23.
    Dittmann K, Mayer C, Rodemann HP. Nuclear EGFR as novel therapeutic target: insights into nuclear translocation and function. Strahlenther Onkol 2010;186:1–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Edwards JC, Chapman D, Cramp WA, et al. The effects of ionizing radiation on biomembrane structure and function. Prog Biophys Mol Biol 1984;43:71–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Falconer JS, Ross JA, Fearon KCH, et al. Effect of eicosapentaenoic acid and other fatty-acids on the growth in-vitro of human pancreatic-cancer cell-lines. Br J Cancer 1994;69:826–32.CrossRefPubMedGoogle Scholar
  26. 26.
    Gabrys D, Dörfler A, Yaromina A, et al. Effects of lovastatin alone or combined with irradiation on tumor cells in vitro and in vivo. Strahlenther Onkol 2008;184:48–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Galeotti T, Masotti L, Borrello S, et al. Oxy-radical metabolism and control of tumor-growth. Xenobiotica 1991;21:1041–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Haimovitz-Friedman A, Kan CC, Ehleiter D, et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 1994;180:525–35.CrossRefPubMedGoogle Scholar
  29. 29.
    Heimli H, Finstad HS, Drevon CA. Necrosis and apoptosis in lymphoma cell lines exposed to eicosapentaenoic acid and antioxidants. Lipids 2001;36:613–21.CrossRefPubMedGoogle Scholar
  30. 30.
    Igarashi M, Miyazawa T. Do conjugated eicosapentaenoic acid and conjugated docosahexaenoic acid induce apoptosis via lipid peroxidation in cultured human tumor cells? Biochem Biophys Res Commun 2000;270:649–56.CrossRefPubMedGoogle Scholar
  31. 31.
    Köteles GJ, Somosy Z. Radiation responses in plasma membrane. Review of the present state and future trends. Cell Mol Biol 2001;47:473–84.PubMedGoogle Scholar
  32. 32.
    Koumura T, Nakamura C, Nakagawa Y. Involvement of hydroperoxide in mitochondria in the induction of apoptosis by the eicosapentaenoic acid. Free Radic Res 2005;39:225–35.CrossRefPubMedGoogle Scholar
  33. 33.
    Lai PBS, Ross JA, Fearon KCH, et al. Cell cycle arrest and induction of apoptosis in pancreatic cancer cells exposed to eicosapentaenoic acid in vitro. Br J Cancer 1996;74:1375–83.CrossRefPubMedGoogle Scholar
  34. 34.
    Leyko W, Bartosz G. Membrane effects of ionizing radiation and hyperthermia. Int J Radiat Biol Relat Stud Phys Chem Med 1986;49:743–70.CrossRefPubMedGoogle Scholar
  35. 35.
    Lövey J, Bereczky B, Gilly R, et al. Recombinant human erythropoietin alpha improves the efficacy of radiotherapy of a human tumor xenograft, affecting tumor cells and microvessels. Strahlenther Onkol 2008;184:1–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Macchia A, Varini S, Grancelli H, et al. The rationale and design of the FORomegaARD Trial: a randomized, double-blind, placebo-controlled, independent study to test the efficacy of n-3 PUFA for the maintenance of normal sinus rhythm in patients with previous atrial fibrillation. Am Heart J 2009;157:423–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Mahoney EM, Hamill AL, Scott WA, et al. Response of endocytosis to altered fatty acyl composition of macrophage phospholipids. Proc Natl Acad Sci U S A 1977;74:4895–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Marathe D, Mishra KP. Radiation-induced changes in permeability in unilamellar phospholipid liposomes. Radiat Res 2002;157:685–92.CrossRefPubMedGoogle Scholar
  39. 39.
    Marnett LJ. Lipid peroxidation – DNA damage by malondialdehyde. Mutat Res-Fundam Mol Mech Mutagen 1999;424:83–95.CrossRefGoogle Scholar
  40. 40.
    Marquardt F, Rödel F, Capalbo G, et al. Molecular targeted treatment and radiation therapy for rectal cancer. Strahlenther Onkol 2009;185:371–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Milne GL, Yin H, Morrow JD. Human biochemistry of the isoprostane pathway. J Biol Chem 2008;283:15533–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Nitsche M, Christiansen H, Hermann RM, et al. The combined effect of fludarabine monophosphate and radiation as well as gemcitabine and radiation on squamous carcinoma tumor cell lines in vitro. Int J Radiat Biol 2008;84:643–57.CrossRefPubMedGoogle Scholar
  43. 43.
    Ojeda F, Diehl HA, Folch H. Radiation induced membrane changes and programmed cell death: possible interrelationships. Scanning Microsc 1994;3:645–51.PubMedGoogle Scholar
  44. 44.
    Riediger ND, Othman RA, Suh M, et al. A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 2009;109:668–79.CrossRefPubMedGoogle Scholar
  45. 45.
    Ross JA, Maingay JP, Fearon KC, et al. Eicosapentaenoic acid perturbs signalling via the NFkappaB transcriptional pathway in pancreatic tumour cells. Int J Oncol 2003;23:1733–8.PubMedGoogle Scholar
  46. 46.
    Schley PD, Jijon HB, Robinson LE, et al. Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 2005;92:187–95.CrossRefPubMedGoogle Scholar
  47. 47.
    Schonberg SA, Lundemo AG, Fladvad T, et al. Closely related colon cancer cell lines display different sensitivity to polyunsaturated fatty acids, accumulate different lipid classes and downregulate sterol regulatory elementbinding protein 1. FEBS J 2006;273:2749–65.CrossRefPubMedGoogle Scholar
  48. 48.
    Schonberg SA, Rudra PK, Noding R, et al. Evidence that changes in Seglutathione peroxidase levels affect the sensitivity of human tumour cell lines to n-3 fatty acids. Carcinogenesis 1997;18:1897–904.CrossRefPubMedGoogle Scholar
  49. 49.
    Stromberg JS, Lee YJ, Armour EP, et al. Lack of radiosensitization after paclitaxel treatment of 3 human carcinoma cell-lines. Cancer 1995;75: 2262–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Tisdale MJ. Inhibition of lipolysis and muscle protein degradation by EPA in cancer cachexia. Nutrition 1996;12:S31–3.Google Scholar
  51. 51.
    Vartak S, Robbins MEC, Spector AA. Polyunsaturated fatty acids increase the sensitivity of 36B10 rat astrocytoma cells to radiation-induced cell kill. Lipids 1997;32:283–92.CrossRefPubMedGoogle Scholar
  52. 52.
    von Schacky C. A review of omega-3 ethyl esters for cardiovascular prevention and treatment of increased blood triglyceride levels. Vasc Health Risk Manag 2006;2:251–62.CrossRefGoogle Scholar
  53. 53.
    Zhivotovsky B, Joseph B, Orrenius S. Tumor radiosensitivity and apoptosis. Exp Cell Res 1999;248:10–7.CrossRefPubMedGoogle Scholar

Copyright information

© Urban & Vogel, Muenchen 2011

Authors and Affiliations

  • Katrin Manda
    • 1
    • 3
  • Stephan Kriesen
    • 1
  • Guido Hildebrandt
    • 1
  • Rainer Fietkau
    • 2
  • Gunther Klautke
    • 2
  1. 1.Department of RadiotherapyUniversity of RostockRostockGermany
  2. 2.Department of Radiation OncologyUniversity Hospital ErlangenErlangenGermany
  3. 3. Department of RadiotherapyUniversity of RostockRostockGermany

Personalised recommendations