Strahlentherapie und Onkologie

, Volume 186, Issue 8, pp 444–451 | Cite as

Radiobiological Comparison of Hypofractionated Accelerated Partial-Breast Irradiation (APBI) and Single-Dose Intraoperative Radiotherapy (IORT) with 50-kV X-Rays

  • Carsten HerskindEmail author
  • Frederik Wenz
Original Article


Background and Purpose:

Intraoperative radiotherapy (IORT) of the tumor bed in early breast cancer is presently performed with a single dose of 50-kV X-rays from a miniaturized X-ray machine using spherical applicators. The purpose was to model the biological effect of hypofractionated accelerated partial-breast irradiation (APBI) with ten fractions.

Material and Methods:

The relative biologic effectiveness (RBE) was estimated from the linear-quadratic (L-Q) formalism including repair of sublethal damage or assuming a constant RBE = 1.2–1.5. The radial distribution of biological effect was assessed from clinical dose-response curves. In accordance with clinical convention, the dose for APBI was prescribed at 1 cm depth in the tumor bed, whereas for IORT it was prescribed at the applicator surface.


The fraction size was fitted to give the same risk of late normal-tissue reaction (fibrosis) as single-dose IORT with a maximum dose of 20 Gy. The isoeffective fraction size at 1 cm depth varied between 1.01 Gy for RBE estimated from the L-Q model and 1.64 Gy for constant RBE. The applicator size and dose prescription point influenced the radial dose distribution. The “sphere of equivalence” within which the risk for local recurrence is the same for whole-breast radiotherapy was predicted to extend to 11–15 mm distance from the applicator for α/β = 10 Gy and 9–13 mm for α/β = 4 Gy for hypofractionated APBI, representing an increase of the sphere of equivalence by 2.5–6 mm relative to single-dose IORT.


An increase of the therapeutic window with hypofractionated APBI relative to single-dose IORT should be feasible.

Key Words

Breast Radiotherapy Fractionation APBI Modeling 

Strahlenbiologischer Vergleich hypofraktionierter, akzelerierter Teilbrustbestrahlung (APBI) und einzeitiger intraoperativer Radiotherapie (IORT) mit 50-kV-Rontgenstrahlen


Hintergrund und Ziel:

Die intraoperative Radiotherapie (IORT) des Tumorbetts bei frühen Mammatumoren mit 50-kV-Rontgenstrahlen von einem miniaturisierten Röntgengerät wird derzeit als Einzeitbestrahlung mit sphärischen Applikatoren durchgeführt. Das Ziel war, die biologische Wirkung einer hypofraktionierten, akzelerierten Teilbrustbestrahlung (APBI) mit zehn Fraktionen zu modellieren.

Material und Methodik:

Die relative biologische Wirksamkeit (RBE) wurde mit dem linear-quadratischen Formalismus einschließlich Reparatur subletaler Schäden veranschlagt, alternativ wurde ein konstanter Wert von RBE = 1,2–1,5 angenommen. Die radiale Risikoverteilung biologischer Wirkung wurde mit Hilfe von klinischen Dosis-Wirkungs-Kurven bestimmt (Abbildung 1). Die Dosis für APBI wurde anhand der klinischen Verschreibungskonventionen in 1 cm Tiefe des Tumorbetts festgelegt, während die Dosis für IORT an der Oberfläche verschrieben wurde.


Die Fraktionsgröße wurde angepasst, bis das gleiche Risiko später Normalgewebsreaktion (Fibrose) wie nach Einzeit-IORT mit einer maximalen Dosis von 20 Gy erreicht wurde (Abbildung 2). Die isoeffektive Fraktionsgröße in 1 cm Tiefe war 1,01 Gy, wenn RBE mit dem linear-quadratischen Modell bestimmt wurde, und 1,64 Gy für konstante RBE (Tabelle 1). Die Applikatorgröße und der Dosisverschreibungspunkt beeinflussten die radiale Dosisverteilung (Abbildung 3). Die Äquivalenzkugel, innerhalb welcher das Rezidivrisiko gleich groß wie bei Ganzbrustbestrahlung ist, erstreckte sich bis 11–15 mm Abstand von der Applikatoroberfläche für α/β = 10 Gy und bis 9–13 mm für α/β = 4 Gy (Abbildung 4). Dies entspricht einer Vergrößerung um 2,5–6 mm im Vergleich zur Einzeit-IORT.


Eine Vergrößerung des therapeutischen Fensters durch hypofraktionierte APBI gegenüber Einzeit-IORT sollte möglich sein.


Teilbrustbestrahlung Strahlentherapie Fraktionierung Modellierung 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bentzen SM, Agrawal RK, Aird EG, et al. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet Oncol 2008;9:331–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Bentzen SM, Christensen JJ, Overgaard J, et al. Some methodological problems in estimating radiobiological parameters from clinical data. Alpha/ beta ratios and electron RBE for cutaneous reactions in patients treated with postmastectomy radiotherapy. Acta Oncol 1988;27:105–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Bentzen SM, Thames HD, Overgaard M. Latent-time estimation for late cutaneous and subcutaneous radiation reactions in a single-follow-up clinical study. Radiother Oncol 1989;15:267–74.CrossRefPubMedGoogle Scholar
  4. 4.
    Brenner DJ, Leu CS, Beatty JF, et al. Clinical relative biological effectiveness of low-energy x-rays emitted by miniature x-ray devices. Phys Med Biol 1999;44:323–33.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen Z, King W, Pearcey R, et al. The relationship between waiting time for radiotherapy and clinical outcomes: a systematic review of the literature. Radiother Oncol 2008;87:3–16.CrossRefPubMedGoogle Scholar
  6. 6.
    Hammer J, Track C, Seewald DH, et al. Local relapse after breast-conserving surgery and radiotherapy. Effects on survival parameters. Strahlenther Onkol 2009;185:431–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Herskind C, Griebel J, Kraus-Tiefenbacher U, et al. Sphere of equivalence — a novel target volume concept for intraoperative radiotherapy using lowenergy X rays. Int J Radiat Oncol Biol Phys 2008;72:1575–81.PubMedGoogle Scholar
  8. 8.
    Herskind C, Steil V, Kraus-Tiefenbacher U, et al. Radiobiological aspects of intraoperative radiotherapy (IORT) with isotropic low-energy X rays for early-stage breast cancer. Radiat Res 2005;163:208–15.CrossRefPubMedGoogle Scholar
  9. 9.
    Hopewell JW, Rezvani M, Moustafa HF. The pig as a model for the study of radiation effects on the lung. Int J Radiat Biol 2000;76:447–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Huang J, Barbera L, Brouwers M, et al. Does delay in starting treatment affect the outcomes of radiotherapy? A systematic review. J Clin Oncol 2003;21:555–63.CrossRefPubMedGoogle Scholar
  11. 11.
    Intra M, Luini A, Gatti G, et al. Surgical technique of intraoperative radiation therapy with electrons (ELIOT) in breast cancer: a lesson learned by over 1000 procedures. Surgery 2006;140:467–71.CrossRefPubMedGoogle Scholar
  12. 12.
    Joiner MC, Bentzen SM. Fractionation: the linear-quadratic approach. In: Joiner M, Van der Kogel A, eds. Basic clinical radiobiology, 4th edn. London: Hodder Arnold, 2009:102–19.Google Scholar
  13. 13.
    Kraus-Tiefenbacher U, Bauer L, Scheda A, et al. Long-term toxicity of an intraoperative radiotherapy boost using low energy X-rays during breast-conserving surgery. Int J Radiat Oncol Biol Phys 2006;66:377–81.PubMedGoogle Scholar
  14. 14.
    Kurtz JM. The clinical radiobiology of breast cancer radiotherapy. Radiother Oncol 2005;75:6–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Ludwig V, Schwab F, Guckenberger M, et al. Comparison of wedge versus segmented techniques in whole breast irradiation. Effects on dose exposure outside the treatment volume. Strahlenther Onkol 2008;184:307–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Mannino M, Yarnold J. Accelerated partial breast irradiation trials: diversity in rationale and design. Radiother Oncol 2009;91:16–22.CrossRefPubMedGoogle Scholar
  17. 17.
    Mussari S, Sabino Della Sala W, Busana L, et al. Full-dose intraoperative radiotherapy with electrons in breast cancer. First report on late toxicity and cosmetic results from a single-institution experience. Strahlenther Onkol 2006;182:589–95.CrossRefPubMedGoogle Scholar
  18. 18.
    Nairz O, Sedlmayer F. Accelerated partial breast irradiation as part of breast conserving therapy of early breast carcinoma: a systematic review. Radiother Oncol 2009. Oct. 21 [e-pub ahead of print]Google Scholar
  19. 19.
    Nelson JC, Beitsch PD, Vicini FA, et al. Four-year clinical update from the American Society of Breast Surgeons MammoSite brachytherapy trial. Am J Surg 2009;198:83–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Ott OJ, Lotter M, Fietkau R, et al. Accelerated partial-breast irradiation with interstitial implants. Analysis of factors affecting cosmetic outcome. Strahlenther Onkol 2009;185:170–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Polgar C, Fodor J, Major T, et al. Breast-conserving treatment with partial or whole breast irradiation for low-risk invasive breast carcinoma — 5-year results of a randomized trial. Int J Radiat Oncol Biol Phys 2007;69:694–702.PubMedGoogle Scholar
  22. 22.
    Polgar C, Strnad V, Kovacs G. Partial-breast irradiation or whole-breast radiotherapy for early breast cancer. A meta-analysis of randomized trials. Strahlenther Onkol 2010;186:113–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Reitsamer R, Sedlmayer F, Kopp M, et al. The Salzburg concept of intraoperative radiotherapy for breast cancer: results and considerations. Int J Cancer 2006;118:2882–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Smith BD, Arthur DW, Buchholz TA, et al. Accelerated partial breast irradiation consensus statement from the American Society for Radiation Oncology (ASTRO). Int J Radiat Oncol Biol Phys 2009;74:987–1001.PubMedGoogle Scholar
  25. 25.
    Swanson TA, Vicini FA. Overview of accelerated partial breast irradiation. Curr Oncol Rep 2008;10:54–60.CrossRefPubMedGoogle Scholar
  26. 26.
    Thames H, Hendry JH. Fractionation in radiotherapy. London: Taylor & Francis, 1987.Google Scholar
  27. 27.
    Vaidya JS. Partial breast irradiation using targeted intraoperative radiotherapy (Targit). Nat Clin Pract Oncol 2007;4:384–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Vaidya JS, Baum M, Tobias JS, et al. Targeted intraoperative radiotherapy (TARGIT) yields very low recurrence rates when given as a boost. Int J Radiat Oncol Biol Phys 2006;66:1335–8.PubMedGoogle Scholar
  29. 29.
    Vaidya JS, Tobias JS, Baum M, et al. Intraoperative radiotherapy for breast cancer. Lancet Oncol 2004;5:165–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Van Dyk J, Keane TJ, Kan S, et al. Radiation pneumonitis following large single dose irradiation: a re-evaluation based on absolute dose to lung. Int J Radiat Oncol Biol Phys 1981;7:461–7.PubMedGoogle Scholar
  31. 31.
    Veronesi U, Orecchia R, Luini A, et al. Full-dose intraoperative radiotherapy with electrons during breast-conserving surgery: experience with 590 cases. Ann Surg 2005;242:101–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Vicini F, Winter K, Wong J, et al. Initial efficacy results of RTOG 0319: three-dimensional conformal radiation therapy (3D-CRT) confined to the region of the lumpectomy cavity for stage I/II breast carcinoma. Int J Radiat Oncol Biol Phys 2009;Nov 10. [Epub ahead of print].Google Scholar
  33. 33.
    Wadasadawala T, Sarin R, Budrukkar A, et al. Accelerated partial-breast irradiation vs conventional whole-breast radiotherapy in early breast cancer: a case-control study of disease control, cosmesis, and complications. J Cancer Res Ther 2009;5:93–101.CrossRefPubMedGoogle Scholar
  34. 34.
    Wenz F, Budach W, Dunst J, et al. Accelerated partial-breast irradiation (APBI) — ready for prime time? Strahlenther Onkol 2009;185:653–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Wenz F, Welzel G, Keller A, et al. Early initiation of external beam radiotherapy (EBRT) may increase the risk of long-term toxicity in patients undergoing intraoperative radiotherapy (IORT) as a boost for breast cancer. Breast 2008;17:617–22.CrossRefPubMedGoogle Scholar
  36. 36.
    Wilder RB, Curcio LD, Khanijou RK, et al. A Contura catheter offers dosimetric advantages over a MammoSite catheter that increase the applicability of accelerated partial breast irradiation. Brachytherapy 2009;8:373–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Williams MV, Denekamp J, Fowler JF. A review of alpha/beta ratios for experimental tumors: implications for clinical studies of altered fractionation. Int J Radiat Oncol Biol Phys 1985;11:87–96.PubMedGoogle Scholar
  38. 38.
    Yoshida K, Nose T, Masuda N, et al. Preliminary result of accelerated partial breast irradiation after breast-conserving surgery. Breast Cancer 2009;16:105–12.CrossRefPubMedGoogle Scholar

Copyright information

© Urban & Vogel, Muenchen 2010

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity Medical Center MannheimMannheimGermany
  2. 2.Klinik für Strahlentherapie und RadioonkologieUniversitätsmedizin MannheimMannheimGermany

Personalised recommendations