Strahlentherapie und Onkologie

, Volume 185, Issue 7, pp 425–430 | Cite as

Effect of Breathing Motion in Radiotherapy of Breast Cancer

4D Dose Calculation and Motion Tracking via EPID
  • Anne RichterEmail author
  • Reinhard Sweeney
  • Kurt Baier
  • Michael Flentje
  • Matthias Guckenberger
Original Article


To evaluate the influence of breathing motion in postoperative whole-breast radiotherapy.

Patients and Methods:

For ten patients with left-sided breast cancer, radiotherapy treatment plans were generated based on conventional three-dimensional computed tomography (3D CT) studies: two techniques (segmented and wedge-based tangential fields) were compared. The influence of breathing motion on the dose to the target and organs at risk (OARs) was evaluated with four-dimensional (4D) dose calculation based on respiration-correlated CTs. Reproducibility of breathing motion was evaluated with electronic portal images (EPID) acquired in cine mode during treatment.


Differences in dose distributions were small between segmented and wedge techniques based on 3D studies. Because of small motion amplitude of the chest in the 4D CT studies (1.8 mm ± 0.9 mm), target coverage was reduced by < 5% due to breathing motion. Differences between 3D and 4D dose calculation were similar for segmented and wedge techniques. Blurring of the dose distribution in 4D dose calculation resulted in lower doses to the OARs. Analysis of EPID movies proved good reproducibility of breathing motion observed in the 4D CT study.


Breathing motion was of minor relevance in postoperative radiotherapy treatment of breast cancer for both segmented and wedge tangential field techniques.

Key Words:

Breast cancer Wedge technique Segmented technique Accumulated dose Target motion MV tracking 

Einfluss der Atembewegung auf die strahlentherapeutische Behandlung von Brustkrebs. 4D-Dosisberechnung und Bewegungsverfolgung mit EPID


Untersuchung zum Einfluss der Atembewegung auf die postoperative Brustbestrahlung.

Patienten und Methodik:

Die Bestrahlungsplanung von Tangentenfeldern basierte auf dreidimensionalen Computertomographie-( 3D-CT-)Studien von zehn Brustkrebspatientinnen: Zwei Bestrahlungstechniken (Keilfilterfelder und Segmenttechnik) wurden verglichen. Der Einfluss der Atembewegung auf die Dosis im Zielvolumen und in den Risikoorganen wurde über die akkumulierte Dosisverteilung bestimmt, die aus atemgetriggerten CTs (4D CT) berechnet wurde. Die Reproduzierbarkeit der Atembewegung wurde mittels Portal Image Movies analysiert.


In den 3D-Studien wurden nur geringe Unterschiede zwischen segment- und keilbasierter Technik beobachtet. Die kleinen Bewegungsamplituden der Thoraxwand in den 4D CTs (1,8 mm ± 0,9 mm) verschlechterten die Zielvolumenerfassung nur wenig. Die Unterschiede zwischen den 3D- und 4D-Dosisverteilungen waren für segment- und keilbasierte Technik ähnlich. Die mittlere Dosis der Risikoorgane verringerte sich aufgrund der Dosisverschmierung. Die Auswertung der Portal Image Movies zeigte eine gute Reproduzierbarkeit der Bewegungsamplitude im Vergleich mit dem 4D CT.


Die Atembewegung beeinflusste die postoperative Bestrahlung von Brustkrebspatientinnen sowohl für die keil- als auch die segmentbasierte Tangententechnik in geringem Maße.


Brustkrebs Brustbestrahlung Keilfiltertechnik Segmenttechnik Akkumulierte Dosis Zielvolumenbewegung MV-Tracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abo-Madyan Y, Polednik M, Rahn A, et al. Improving dose homogeneity in large breasts by IMRT. Efficacy and dosimetric accuracy of different techniques. Strahlenther Onkol 2008;184:86–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Beckham WA, Popescu CC, Patenaude VV, et al. Is multibeam IMRT better than standard treatment for patients with left-sided breast cancer? Int J Radiat Oncol Biol Phys 2007;69:918–24.PubMedGoogle Scholar
  3. 3.
    Bhatnagar AK, Brandner E, Sonnik D, et al. Intensity modulated radiation therapy (IMRT) reduces the dose to the contralateral breast when compared to conventional tangential fields for primary breast irradiation. Breast Cancer Res Treat 2006;96:41–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Brown LM, Chen BE, Pfeiffer RM, et al. Risk of second non-hematological malignancies among 376,825 breast cancer survivors. Breast Cancer Res Treat 2007;106:439–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Ding C, Li X, Huq MS, et al. The effect of respiratory cycle and radiation beam-on timing on the dose distribution of free-breathing breast treatment using dynamic IMRT. Med Phys 2007;34:3500–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Donovan EM, Yarnold JR, Adams EJ, et al. An investigation into methods of IMRT planning applied to breast radiotherapy. Br J Radiol 2008;81:311–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Fein DA, McGee KP, Schultheiss TE, et al. Intra- and interfractional reproducibility of tangential breast fields: a prospective on-line portal imaging study. Int J Radiat Oncol Biol Phys 1996;34:733–40.PubMedGoogle Scholar
  8. 8.
    Fowble B, Hanlon A, Freedman G, et al. Second cancers after conservative surgery and radiation for stages I–II breast cancer: identifying a subset of women at increased risk. Int J Radiat Oncol Biol Phys 2001;51:679–90.PubMedGoogle Scholar
  9. 9.
    George R, Keall PJ, Kini VR, et al. Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery. Med Phys 2003;30:552–62.PubMedCrossRefGoogle Scholar
  10. 10.
    Guckenberger M, Krieger T, Richter A, et al. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy. Radiother Oncol 2008;91:288–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Guckenberger M, Krieger T, Wilbert J, et al. Four dimensional target volume generation in pulmonary stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 2007;69:191.Google Scholar
  12. 12.
    Guckenberger M, Weininger M, Wilbert J, et al. Influence of retrospective sorting on image quality in respiratory correlated computed tomography. Radiother Oncol 2007;85:223–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Guckenberger M, Wilbert J, Krieger T, et al. Four-dimensional treatment planning for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 2007;69:276–85.PubMedGoogle Scholar
  14. 14.
    Gulyban A, Kovacs P, Sebestyen Z, et al. Multisegmented tangential breast fields: a rational way to treat breast cancer. Strahlenther Onkol 2008;184:262–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Kestin LL, Sharpe MB, Frazier RC, et al. Intensity modulation to improve dose uniformity with tangential breast radiotherapy: initial clinical experience. Int J Radiat Oncol Biol Phys 2000;48:1559–68.PubMedGoogle Scholar
  16. 16.
    Kinoshita R, Shimizu S, Taguchi H, et al. Three-dimensional intrafractional motion of breast during tangential breast irradiation monitored with high-sampling frequency using a real-time tumor-tracking radiotherapy system. Int J Radiat Oncol Biol Phys 2008;70:931–4.PubMedGoogle Scholar
  17. 17.
    Liu Q, McDermott P Burmeister J. Effect of respiratory motion on the delivery of breast radiotherapy using SMLC intensity modulation. Med Phys 2007;34:347–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Ludwig V, Schwab F, Guckenberger M, et al. Comparison of wedge versus segmented techniques in whole breast irradiation. Effects on dose exposure outside the treatment volume. Strahlenther Onkol 2008;184:307–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Meyer J, Baier K, Richter A, et al. Analysis of different algorithms for tracking moving organs by means of megavoltage imaging. 8th Biennial ESTRO Meeting on Physics and Radiation Technology for Clinical Radiotherapy, Lisbon, Portugal, 24.–29.09.2005.Google Scholar
  20. 20.
    Meyer J, Richter A, Baier K, et al. Tracking moving objects with megavoltage portal imaging: a feasibility study. Med Phys 2006;33:1275–80PubMedCrossRefGoogle Scholar
  21. 21.
    Panettieri V, Wennberg B, Gagliardi G, et al. SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems. Phys Med Biol 2007;52:4265–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Pignol JP, Olivotto I, Rakovitch E, et al. A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol 2008;26:2085–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Richmond ND, Turner RN, Dawes PJ, et al. Evaluation of the dosimetric consequences of adding a single asymmetric or MLC shaped field to a tangential breast radiotherapy technique. Radiother Oncol 2003;67:165–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Robert Koch Institute. Cancer in Germany 2003–2004: incidence and trends, 6th edn. Berlin: Robert Koch Institute, 2008:113.Google Scholar
  25. 25.
    RTOG. NSABP protocol 0413. A randomized phase III study of conventional whole breast irradiation (WBI) versus partial breast irradiation (PBI) for women with stage 0, I, or II breast cancer - report no. 47. Philadelphia: RTOG, 2006:108.Google Scholar
  26. 26.
    Sautter-Bihl ML, Budach W, Dunst J, et al. DEGRO practical guidelines for radiotherapy of breast cancer I. Breast-conserving therapy. Strahlenther Onkol 2007;183:661–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Sidhu S, Sidhu NP, Lapointe C, et al. The effects of intrafraction motion on dose homogeneity in a breast phantom with physical wedges, enhanced dynamic wedges, and ssIMRT. Int J Radiat Oncol Biol Phys 2006;66:64–75.PubMedGoogle Scholar
  28. 28.
    Smith RP, Bloch P, Harris EE, et al. Analysis of interfraction and intrafraction variation during tangential breast irradiation with an electronic portal imaging device. Int J Radiat Oncol Biol Phys 2005;62:373–8.PubMedGoogle Scholar
  29. 29.
    Van Asselen B, Raaijmakers CP, Hofman P, et al. An improved breast irradiation technique using three-dimensional geometrical information and intensity modulation. Radiother Oncol 2001;58:341–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Van der Laan HP, Dolsma WV, Maduro JH, et al. Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy. Radiat Oncol 2008;3:6.PubMedCrossRefGoogle Scholar
  31. 31.
    Van Herk M, Remeijer P Lebesque JV. Inclusion of geometric uncertainties in treatment plan evaluation. Int J Radiat Oncol Biol Phys 2002;52:1407–22.PubMedGoogle Scholar
  32. 32.
    Wolthaus JW, Sonke JJ, van Herk M, et al. Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. Int J Radiat Oncol Biol Phys 2008;70:1229–38.PubMedGoogle Scholar
  33. 33.
    Woo TC, Pignol JP, Rakovitch E, et al. Body radiation exposure in breast cancer radiotherapy: impact of breast IMRT and virtual wedge compensation techniques. Int J Radiat Oncol Biol Phys 2006;65:52–8.PubMedGoogle Scholar
  34. 34.
    Yue NJ, Li X, Beriwal S, et al. The intrafraction motion induced dosimetric impacts in breast 3D radiation treatment: a 4DCT based study. Med Phys 2007;34:2789–800.PubMedCrossRefGoogle Scholar
  35. 35.
    Zackrisson B, Arevarn M, Karlsson M. Optimized MLC-beam arrangements for tangential breast irradiation. Radiother Oncol 2000;54:209–12.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang G, Jiang Z, Shepard D, et al. Direct aperture optimization of breast IMRT and the dosimetric impact of respiration motion. Phys Med Biol 2006;51:N357–69.PubMedCrossRefGoogle Scholar

Copyright information

© Urban &amp; Vogel, Muenchen 2009

Authors and Affiliations

  • Anne Richter
    • 1
    • 2
    Email author
  • Reinhard Sweeney
    • 1
  • Kurt Baier
    • 1
  • Michael Flentje
    • 1
  • Matthias Guckenberger
    • 1
  1. 1.University of WürzburgDepartment of Radiation OncologyWürzburgGermany
  2. 2.Department of Radiation OncologyJulius Maximilian UniversityWürzburgGermany

Personalised recommendations