Strahlentherapie und Onkologie

, 184:674 | Cite as

Reduced rectal toxicity with ultrasound-based image guided radiotherapy using BAT™ (B-mode acquisition and targeting system) for prostate cancer

  • Markus Bohrer
  • Peter Schröder
  • Grit Welzel
  • Hansjörg Wertz
  • Frank Lohr
  • Frederik Wenz
  • Sabine Kathrin Mai
Original Article

Abstract

Purpose

To evaluate the effect of image guided radiotherapy with stereotactic ultrasound BAT (B-mode acquisition and targeting system) on rectal toxicity in conformal radiotherapy of prostate cancer.

Patients and Methods

42 sequential patients with prostate cancer undergoing radiotherapy before and after the introduction of BAT were included. Planning computed tomography (CT) was performed with empty rectum and moderately filled bladder. The planning target volume (PTV) included the prostate and seminal vesicles with a safety margin of 1.5 cm in anterior and lateral direction. In posterior direction the anterior 1/3 of the rectum circumference were included. Total dose was 66 Gy and a boost of 4 Gy excluding the seminal vesicles.

22 patients (BAT group) were treated with daily stereotactic ultrasound positioning, for the other 20 patients (NoBAT group) an EPID (electronic portal imaging device) was performed once a week. Acute and late genito-urinary (GU) and rectal toxicity and PSA values were evaluated after 1.5, 3, 6, 9 and 12 months. The total median follow up of toxicity was 3 years in the BAT group and 4 years in the NoBAT group.

Results

In the NoBAT group significant more rectal toxicity occurred, while in GU toxicity no difference was seen. Two patients in the NoBAT group showed late rectal toxicity grade 3, no toxicity > grade 2 occurred in the BAT group. There was no significant difference in PSA reduction between the groups.

Conclusion

Without BAT significant more acute and a trend to more late rectal toxicity was found. With regard to dose escalation this aspect is currently evaluated with a larger number of patients using intensity-modulated radiotherapy (IMRT).

Key Words

Image guided radiotherapy Stereotactic ultrasound BAT Rectal toxicity Prostate cancer 

Reduzierte Rektumtoxizität mit bildgestützter Radiotherapie mittels BAT™ (B-Mode Acquisition and Targeting-System) beim Prostatakarzinom

Zusammenfassung

Hintergrund

Ziel dieser Auswertung war es, den Effekt der bildgebungsgestützen Strahlentherapie mittels stereotaktischem Ultraschall-BAT (B-mode Acqusition and Targeting-System) auf die Akut- und Spättoxizität am Rektum sowie auf den Verlauf der PSA-Werte zu ermitteln.

Patienten und Methodik

42 Patienten mit Prostatakarzinom wurden in die Auswertung eingeschlossen (Tabelle 1). Die Planung erfolgte standardisiert mit entleertem Rektum und moderat gefüllter Blase. Es wurde ein Planungszielvolumen (PTV) unter Einschluss der Prostata und Samenblasen mit einem Sicherheitsabstand lateral und anterior von 1,5 cm definiert. Posterior wurde maximal das vordere Rektumdrittel eingeschlossen. Die Gesamtdosis betrug 66 Gy mit einem Boost unter Ausschluss der Samenblasen mit nochmals 4 Gy.

Bei 22 Patienten erfolgte die tägliche Lagerungskontrolle mit stereotaktischem Ultraschall (BAT-Gruppe), bei den restlichen 20 (NoBAT-Gruppe) wurde einmal wöchentlich eine Verifikationsaufnahme (EPID) zur Lagerungskontrolle durchgeführt. Die Akuttoxizität und Spättoxizität an der Blase und am Rektum sowie der Verlauf der PSA-Werte nach 1,5, 3, 6, 9 und 12 Monaten wurden ermittelt. Der Beobachtungszeitraum der Patienten ohne BAT war 3–4 Jahre und mit BAT 2–3 Jahre.

Ergebnisse

In der NoBAT-Gruppe trat signifikant häufiger eine höhergradige Rektumtoxizität auf (Abbildungen 1 und 2), während sich bei der Blasentoxizität kein wesentlicher Unterschied in beiden Gruppen zeigte. Zwei Patienten aus der NoBAT-Gruppe hatten als Spättoxizität eine persistierende rektale Blutung. In der BAT-Gruppe fand sich keine Spättoxizität > Grad 2. Der Verlauf der PSA-Werte zeigte keinen relevanten Unterschied (Abbildung 3).

Schlussfolgerung

Ohne BAT trat signifikant mehr Akuttoxizität und tendenziell mehr Spättoxizität am Rektum auf. Dieser Aspekt wird insbesondere im Hinblick auf eine Dosiseskalation an einer größeren Patientengruppe mit intensitätsmodulierter Strahlentherapie (IMRT) evaluiert.

Schlüsselwörter

Bildgebungsgestützte Strahlentherapie Stereotaktischer Ultraschall BAT Rektumtoxizität Prostatakarzinom 

References

  1. 1.
    Artignan X, Smitsmans MH, Lebesque JV, et al. Online ultrasound image guidance for radiotherapy of prostate cancer: impact of image acquisition on prostate displacement. Int J Radiat Oncol Biol Phys 2004;59:595–601.PubMedGoogle Scholar
  2. 2.
    Booth JT and Zavgorodni SF. Set-up error & organ motion uncertainty: a review. Australas Phys Eng Sci Med 1999;22:29–47.PubMedGoogle Scholar
  3. 3.
    Chandra A, Dong L, Huang E, et al. Experience of ultrasound-based daily prostate localization. Int J Radiat Oncol Biol Phys 2003;56:436–447.PubMedCrossRefGoogle Scholar
  4. 4.
    de Crevoisier R, Tucker SL, Dong L, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 2005;62:965–973.PubMedGoogle Scholar
  5. 5.
    Dobler B, Mai S, Ross C, et al. Evaluation of possible prostate displacement induced by pressure applied during transabdominal ultrasound image acquisition. Strahlenther Onkol 2006;182:240–246.PubMedCrossRefGoogle Scholar
  6. 6.
    El-Bassiouni M, Davis JB, El-Attar I, et al. Target motion variability and on-line positioning accuracy during external-beam radiation therapy of prostate cancer with an endorectal balloon device. Strahlenther Onkol 2006;182:531–536.PubMedCrossRefGoogle Scholar
  7. 7.
    Elsayed H, Bolling T, Moustakis C, et al. Organ movements and dose exposures in teletherapy of prostate cancer using a rectal balloon. Strahlenther Onkol 2007;183:617–624.PubMedCrossRefGoogle Scholar
  8. 8.
    Fuss M, Cavanaugh SX, Fuss C, et al. Daily stereotactic ultrasound prostate targeting: inter-user variability. Technol Cancer Res Treat 2003;2:161–170.PubMedGoogle Scholar
  9. 9.
    Greco C, Mazzetta C, Cattani F, et al. Finding dose-volume constraints to reduce late rectal toxicity following 3D-conformal radiotherapy (3D-CRT) of prostate cancer. Radiother Oncol 2003;69:215–222.PubMedCrossRefGoogle Scholar
  10. 10.
    Hanks GE, Hanlon AL, Schultheiss TE, et al. Dose escalation with 3D conformal treatment: five year outcomes, treatment optimization, and future directions. Int J Radiat Oncol Biol Phys 1998;41:501–510.PubMedCrossRefGoogle Scholar
  11. 11.
    Jani AB, Gratzle J. Late radiotherapy toxicity after prostate cancer treatment: influence of hormonal therapy. Urology 2005;66:566–570.PubMedCrossRefGoogle Scholar
  12. 12.
    Jani AB, Gratzle J, Muresan E, et al. Analysis of acute toxicity with use of transabdominal ultrasonography for prostate positioning during intensity-modulated radiotherapy. Urology 2005;65:504–508.PubMedCrossRefGoogle Scholar
  13. 13.
    Jemal A, Murray T, Ward E, et al. Cancer statistics, 2005. CA Cancer J Clin 2005;55:10–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Langen KM, Jones DT. Organ motion and its management. Int J Radiat Oncol Biol Phys 2001;50:265–278.PubMedGoogle Scholar
  15. 15.
    Langen KM, Pouliot J, Anezinos C, et al. Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys 2003;57:635–644.PubMedGoogle Scholar
  16. 16.
    Lattanzi J, McNeeley S, Pinover W, et al. A comparison of daily CT localization to a daily ultrasound-based system in prostate cancer. Int J Radiat Oncol Biol Phys 1999;43:719–725.PubMedGoogle Scholar
  17. 17.
    Lattanzi J, McNeely S, Hanlon A, et al. Daily CT localization for correcting portal errors in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 1998;41:1079–1086.PubMedGoogle Scholar
  18. 18.
    Little DJ, Dong L, Levy LB, et al. Use of portal images and BAT ultrasonography to measure setup error and organ motion for prostate IMRT: implications for treatment margins. Int J Radiat Oncol Biol Phys 2003;56:1218–1224.PubMedCrossRefGoogle Scholar
  19. 19.
    Lohr F, Fuss M, Tiefenbacher U, et al. [Optimizing the use of radiotherapy with IMRT and image guided location of advanced prostate cancer]. Urologe A 2004;43:43–51.PubMedCrossRefGoogle Scholar
  20. 20.
    McNair HA, Mangar SA, Coffey J, et al. A comparison of CT- and ultrasound-based imaging to localize the prostate for external beam radiotherapy. Int J Radiat Oncol Biol Phys 2006;65:678–687.PubMedGoogle Scholar
  21. 21.
    Mohan DS, Kupelian PA, Willoughby TR. Short-course intensity-modulated radiotherapy for localized prostate cancer with daily transabdominal ultrasound localization of the prostate gland. Int J Radiat Oncol Biol Phys 2000;46:575–580.PubMedGoogle Scholar
  22. 22.
    Morr J, DiPetrillo T, Tsai JS, et al. Implementation and utility of a daily ultrasound-based localization system with intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2002;53:1124–1129.PubMedCrossRefGoogle Scholar
  23. 23.
    Pollack A, Hanlon A, Horwitz EM, et al. Radiation therapy dose escalation for prostate cancer: a rationale for IMRT. World J Urol 2003;21:200–208.PubMedCrossRefGoogle Scholar
  24. 24.
    Pollack A, Smith LG, von Eschenbach AC. External beam radiotherapy dose response characteristics of 1127 men with prostate cancer treated in the PSA era. Int J Radiat Oncol Biol Phys 2000;48:507–512.PubMedGoogle Scholar
  25. 25.
    Pollack A, Zagars GK, Starkschall G, et al. Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 2002;53:1097–1105.PubMedCrossRefGoogle Scholar
  26. 26.
    Scarbrough TJ, Golden NM, Ting JY, et al. Comparison of ultrasound and implanted seed marker prostate localization methods: Implications for image-guided radiotherapy. Int J Radiat Oncol Biol Phys 2006;65:378–387.PubMedGoogle Scholar
  27. 27.
    Serago CF, Chungbin SJ, Buskirk SJ, et al. Initial experience with ultrasound localization for positioning prostate cancer patients for external beam radiotherapy. Int J Radiat Oncol Biol Phys 2002;53:1130–1138.PubMedCrossRefGoogle Scholar
  28. 28.
    Trichter F, Ennis RD. Prostate localization using transabdominal ultrasound imaging. Int J Radiat Oncol Biol Phys 2003;56:1225–1233.PubMedCrossRefGoogle Scholar
  29. 29.
    Troccaz J, Menguy Y, Bolla M, et al. Conformal external radiotherapy of prostatic carcinoma: requirements and experimental results. Radiother Oncol 1993;29:176–183.PubMedCrossRefGoogle Scholar
  30. 30.
    Wertz H, Lohr F, Dobler B, et al. Dosimetric consequences of a translational isocenter correction based on image guidance for intensity modulated radiotherapy (IMRT) of the prostate. Phys Med Biol 2007;52:5655–5665.PubMedCrossRefGoogle Scholar
  31. 31.
    Wertz H, Lohr F, Dobler B, et al. [Dosimetric impact of image-guided translational isocenter correction for 3-D conformal radiotherapy of the prostate]. Strahlenther Onkol 2007;183:203–210.PubMedCrossRefGoogle Scholar
  32. 32.
    Zelefsky MJ, Fuks Z, Hunt M, et al. High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J Urol 2001;166:876–881.PubMedCrossRefGoogle Scholar
  33. 33.
    Zelefsky MJ, Leibel SA, Gaudin PB, et al. Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int J Radiat Oncol Biol Phys 1998;41:491–500.PubMedCrossRefGoogle Scholar
  34. 34.
    Zietman AL, DeSilvio ML, Slater JD, et al. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 2005;294:1233–1239.PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel, Muenchen 2008

Authors and Affiliations

  • Markus Bohrer
    • 2
  • Peter Schröder
  • Grit Welzel
  • Hansjörg Wertz
  • Frank Lohr
  • Frederik Wenz
  • Sabine Kathrin Mai
    • 1
  1. 1.Department of Radiation OncologyUniversity Medical CenterMannheimGermany
  2. 2.Department of Radiation OncologyUniversity Medical CenterMannheimGermany

Personalised recommendations