Advertisement

Operative Orthopädie und Traumatologie

, Volume 31, Issue 1, pp 63–80 | Cite as

Repositionstechniken bei minimal-invasiver Stabilisierung proximaler Humerusfrakturen

  • F. J. P. BeeresEmail author
  • O. M. Quaile
  • B. C. Link
  • R. Babst
CME
  • 193 Downloads

Zusammenfassung

Operationsziel

Ziel der chirurgischen Stabilisierung proximaler Humerusfrakturen ist die Wiederherstellung der anatomischen Verhältnisse zwischen Tuberculum majus und minus sowie die Rekonstruktion der gelenkkommunizierenden Kopfanteile unter Erhalt der Gefäßversorgung der Fragmente.

Indikationen

Rund 80 % der proximalen Humerusfrakturen können konservativ behandelt werden. Die Indikation zur operativen Versorgung wird anhand des Frakturmusters, der patientenbezogenen Faktoren sowie des Risikos für eine avaskuläre Kopfnekrose gestellt. Minimal-invasive Stabilisierungsverfahren erlauben in der Mehrheit frischer proximaler Humeruskopffrakturen mit oder ohne proximale Schaftfraktur eine annähernd anatomische Rekonstruktion.

Operationstechnik

Beach-chair-Lagerung, Arm in pneumatisch artikulierender Traktionsvorrichtung gehalten. Evaluation des indirekten Repositionspotenzials durch Ligamentotaxis unter Visualisierung des Alignements der Kopffragmente in Relation zum Schaft durch Traktion, Ab‑/Adduktion, Flexion/Extension und Rotation. Halten der Reposition durch die Traktionsvorrichtung und eine Schaumstoffrolle in der Axilla, um den Zug des M. pectoralis major und M. teres major bei gleichzeitiger Adduktion des Ellenbogens zu neutralisieren. Bei ungenügender Reposition: direkte Repositionsmanöver mit Hilfe von Kirschner-Drähten. Einbringen dieser durch einen anterolateralen Zugang. Eröffnen der Bursa subdeltoidale, Anschlingen der Sehnen der Rotatorenmanschette und Einbringen eines 2,5-mm-Krischner-Drahts mit Gewinde ins Kopffragment als Joystick. Vorbereiten des Plattenlagers für eine winkelstabile 5‑Loch-Platte unter Protektion des N. axillaris. Befestigen der Platte am Zielgerät und Einführen dieser entlang des Schafts. Positionierung der Platte proximal 5–8 mm unter dem Tuberculum majus und 2–3 mm lateral des Sulkus der langen Bizepssehne. Ausrichten und temporäre Fixation der Platte distal mit anschließender Kontrolle der Plattenposition im axialen Strahlengang. Reposition des Schafts gegen die Platte mit einer Kortikalisschraube. Mit dem Kirschner-Draht im Kopfbereich Unterstützung des Kalkars durch Veränderung der Varus- und Valgusausrichtung. Komplettieren der Osteosynthese proximal mit winkelstabilen Schrauben. Fixieren der Haltefäden der Rotatorenmanschette an der Platte. Schichtweiser Wundverschluss.

Postoperative Behandlung

Sofortige aktiv assistierte Bewegung im Schultergelenk mit physiotherapeutischer Begleitung. Ruhigstellung zu Komfortzwecken. Aktive und resistive Mobilisation nach der ersten klinischen und radiologischen Kontrolle 6 Wochen postoperativ. Weitere radiologische Kontrollen nach 3 und 6 Monaten sowie nach einem Jahr. Keine routinemäßige Plattenentfernung.

Schlüsselwörter

Schulterfraktur Schultergelenk Minimal-invasive Operation Ostheosynthese, Fraktur Winkelstabile Platte 

Reduction techniques for minimally invasive stabilization of proximal humeral fractures

Abstract

Objective

The aim of surgical stabilization of proximal humerus fractures is to restore the anatomical relations between the greater and lesser tubercle, to reconstruct the joint and preserve the vascular supply of the fragments.

Indications

Approximately 80% of proximal humeral fractures can be treated conservatively. Surgical treatment is indicated based on the fracture pattern, patient-related factors and the risk of avascular head necrosis. Two-part fractures with a metaphyseal comminution zone and 3/4-part fractures can benefit from near to anatomic reconstruction depending on the patient’s demands and bone quality. Minimally invasive stabilization procedures allow for an anatomical reconstruction in the majority of fresh proximal humeral fractures with or without a proximal shaft fracture, provided that intraoperative traction allows the fracture to be aligned axially in the image intensifier by ligamentotaxis. Indirect, combined with direct reduction maneuvers, allow for an almost anatomical reconstruction, despite minimal invasive approaches.

Surgical technique

Beach chair position. The arm is held in a pneumatic articulating traction device. Evaluation of the indirect reduction potential by ligamentotaxis with visualization of the alignment of the head fragments in relation to the shaft by traction, abduction/adduction, flexion/extension and rotation. The traction device and a foam roll in the axilla to neutralize the tension of the pectoralis major and teres major muscles while simultaneously adducting the elbow hold the reduction. Insufficient reduction of the fragments requires additional direct reduction maneuvers. Opening of the bursa and fixation of the rotator cuff with sutures to adjust reposition. A 2.5 mm-threaded K‑wire is inserted into the head fragment as a joystick. Under protection of the axillary nerve, the plate is inserted under protection of the axillary nerve. Temporary fixation of the plate with Kirschner wires for positioning the plate 5–8 mm below the greater tubercle and 2–3 mm laterally of the sulcus of the long biceps tendon and subsequent radiographic control. Reduction of the shaft against the plate with a cortex screw. The threaded K‑wire in the head can be used to adjust the varus and valgus alignment and to achieve adequate support of the calcar. Finally, complete the osteosynthesis with angular stable screws.

Postoperative management

Immediate active assisted exercise in the shoulder under physiotherapeutic supervision. Temporary immobilization for patient comfort. Standard active and resistive mobilization after the first clinical and radiological checkup 6 weeks after surgery. Further radiological checks after 3 and 6 months and 1 year. No routine plate removal.

Keywords

Shoulder fractures Glenohumeral joint Minimally invasive surgery Osteosynthesis, fracture Locking compression plate 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

F.J.P. Beeres, O.M. Quaile, B.C. Link und R. Babst geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Launonen AP, Lepola V, Saranko A, Flinkkila T, Laitinen M, Mattila VM (2015) Epidemiology of proximal humerus fractures. Arch Osteoporos 10:209CrossRefGoogle Scholar
  2. 2.
    Court-Brown CM, Caesar B (2006) Epidemiology of adult fractures: A review. Injury 37(8):691–697.  https://doi.org/10.1016/j.injury.2006.04.130 CrossRefPubMedGoogle Scholar
  3. 3.
    Calvo E, Morcillo D, Foruria AM, Redondo-Santamaria E, Osorio-Picorne F, Caeiro JR (2011) Nondisplaced proximal humeral fractures: high incidence among outpatient-treated osteoporotic fractures and severe impact on upper extremity function and patient subjective health perception. J Shoulder Elb Surg Am Shoulder Elb Surg 20:795–801CrossRefGoogle Scholar
  4. 4.
    Hanson B, Neidenbach P, de Boer P, Stengel D (2009) Functional outcomes after nonoperative management of fractures of the proximal humerus. J Shoulder Elbow Surg 18(4):612–621.  https://doi.org/10.1016/j.jse.2009.03.024 CrossRefPubMedGoogle Scholar
  5. 5.
    Brunner F, Sommer C, Bahrs C, Heuwinkel R, Hafner C, Rillmann P et al (2009) Open Reduction and Internal Fixation of Proximal Humerus Fractures Using a Proximal Humeral Locked Plate: A Prospective Multicenter Analysis. J Orthop Trauma 23:163–172.  https://doi.org/10.1097/BOT.0b013e3181920e5b CrossRefPubMedGoogle Scholar
  6. 6.
    Neer CS II (1970) Displaced proximal humerus fractures: Part I: Classification and Evaluation. J Bone Joint Surg Am 52:1077–1089CrossRefGoogle Scholar
  7. 7.
    Beks RB, Ochen Y, Frima H, Smeeing DPJ, van der Meijden O, Timmers TK et al (2018) Operative versus nonoperative treatment of proximal humeral fractures: a systematic review, meta-analysis, and comparison of observational studies and randomized controlled trials. J Shoulder Elbow Surg 27(8):1526–1534.  https://doi.org/10.1016/j.jse.2018.03.009 CrossRefPubMedGoogle Scholar
  8. 8.
    Roux A, Decroocq L, El Batti S, Bonnevialle N, Moineau G, Trojani C et al (2012) Epidemiology of proximal humerus fractures managed in a trauma center. Orthop Traumatol Surg Res 98(6):715–719.  https://doi.org/10.1016/j.otsr.2012.05.013 CrossRefPubMedGoogle Scholar
  9. 9.
    Gerber C, Warner JJP (1997) Complex and Revision Problems in Shoulder Surgery. Lippincott, Williams & Wilkins, Philadelphia, PA, S 215–243Google Scholar
  10. 10.
    Handoll HH, Brorson S (2015) Interventions for treating proximal humeral fractures in adults. Cochrane Database Syst Rev 1(1):Cd434Google Scholar
  11. 11.
    Rangan A, Handoll H, Brealey S, Jefferson L, Keding A, Martin BC et al (2015) Surgical vs nonsurgical treatment of adults with displaced fractures of the proximal humerus: the PROFHER randomized clinical trial. JAMA 313(10):1037–1047CrossRefGoogle Scholar
  12. 12.
    Acklin YR, Stoffel K, Sommer C (2013) A prospective analysis of the functional and radiological outcomes of minimally invasive platting in proximal humerus fracture. Injury 44:456–460CrossRefGoogle Scholar
  13. 13.
    Aguado HJ, Mingo J, Torres M, Alvarez-Ramos A, Martin-Ferrero MA (2016) Minimally invasive polyaxial locking plate osteosynthesis for 3–4 part proximal humeral fractures: our institutional experience. Injury 47S3:S22–S28CrossRefGoogle Scholar
  14. 14.
    Kim JW, Oh CW, Byun YS, Kim JJ, Park KC (2015) A prospective randomized study of operative treatment for nocomminuted humeral shaft fractures: conventional open plating versus minimal invasive plate osteosynthesis. Orthop Trauma 29((4):189–194Google Scholar
  15. 15.
    Lin T, Xiao B, Ma X, Fu D, Yang S (2014) Minimally invasive plate osteosynthesis with a locking compression plate is superior to open reduction and internal fixation in the management of the proximal humerus fractures. Bmc Musculoskelet Disord 15:206CrossRefGoogle Scholar
  16. 16.
    Knezevic J, Mihalj M, Cukelj F, Ivanisevic A (2017) MIPO of proximal humerus frachtrues through an anterolateral acromial approach. Is the axillary nerve at risk? Injury 48S5:S15–S20CrossRefGoogle Scholar
  17. 17.
    Resch H, Beck E, Bayley I (1995) Reconstruction of the valgus-impacted humeral head fracture. J Shoulder Elb Surg 4:73–80CrossRefGoogle Scholar
  18. 18.
    Boileau P, Walch G (1997) The three-dimensional geometry of the proximal humerus: implications for surgical technique and prosthetic design. J Bone Joint Surg Br 79:857–865CrossRefGoogle Scholar
  19. 19.
    Iannotti JP, Gabriel JP, Schneck DL, Evans BG, Misra S (1992) The normal glenohumeral relationships: an anatomical study of one hundred and forty shoulders. J Bone Joint Surg Am 74:491–500CrossRefGoogle Scholar
  20. 20.
    Matsen FA III, Clinton J, Rockwood CA, Wirth MA, (2004) Lippitt SB Glenohumeral arthritis and its management. In: Rockwood CA, Matsen FA, Wirth MA, Lippitt SB (Hrsg) The shoulder, 4. Aufl.Google Scholar
  21. 21.
    Hartmann A, Resch H (2008) Treatment of proximal humerus fractures. In: Galatz L (Hrsg) Orthopedic knowledge update shoulder. andelbow, Bd. 3. American Academy of Orthopedic Surgeons, Rosemont, S 405–422Google Scholar
  22. 22.
    Müller ME (1991) Appendix A: the comprehensive classification of fractures of long bones. In: Müller ME, Allgöwer M, Schneider R, Willenegger H (Hrsg) Manual of Internal Fixation: Techniques Recommended by the AO-ASIF Group. Springer, BerlinCrossRefGoogle Scholar
  23. 23.
    Gerber C, Terrier F, Ganz R (1985) The role of the coracoid process in the chronic impingement syndrome. J Bone Jt Surg Br 67B:703–708CrossRefGoogle Scholar
  24. 24.
    Parnes N, Jupiter JB (2010) Fixed-angle locking plating of displaced proximal humerus fractures. In: Sperling JW (Hrsg) Shoulder and elbow 2: instructional course lectures. American Academy of Orthopaedic Surgeons, Rosemont, S 163–176Google Scholar
  25. 25.
    Koval KF, Gallagher MA, Marsicano JG, Cuomo F, McShinawy A, Zuckerman JD (1997) Functional outcome after minimally displaced fractures of the proximal part of the humerus. J Bone Joint Surg Am 79:203–207CrossRefGoogle Scholar
  26. 26.
    Brooks CH, Revell WJ, Heatley FW (1993) Vascularity of the humeral head after proximal humeral fractures: an anatomical cadaver study. J Bone Joint Surg Br 75:132–136CrossRefGoogle Scholar
  27. 27.
    Gerber C, Schneeberger AG, Vinh TS (1990) The arterial vascularization of the humeral head. an anatomical study. J Bone Joint Surg Am 72(10:1486–1494CrossRefGoogle Scholar
  28. 28.
    Hettrich CM (2010) Boraiah, Dyke JP, Neviaser A, Helfet DL, Lorich DG. Quantitative assesssment of the vascularity of the proximal part of the humerus. J Bone Joint Surg Am 92(4):943–948CrossRefGoogle Scholar
  29. 29.
    Hertel R, Hempfing A, Steihler M, Leunig M (2004) Predictors of humeral head ischemia after intracapsular fracture of the proximal humerus. J Shoulder Elbow Surg 13:427–433CrossRefGoogle Scholar
  30. 30.
    McLaughlin JA, Light R, Lustrin I (1998) Axillary artery injury as a complication of proximal humerus fractures. J Shoulder Elbow Surg 7:292–294CrossRefGoogle Scholar
  31. 31.
    Visser CP, Coene LN, Brand R et al (2001) Nerve lesions in the proximal humerus. J Shoulder Elbow Surg 10:421–427CrossRefGoogle Scholar
  32. 32.
    Warrender WJ, Oppenheimer S, Abboud JA (2011) Nerve monitorin during proximal humeral fracture fixation: what have we learned. Clin Orthop Relat Res 469(9):2631–2637CrossRefGoogle Scholar
  33. 33.
    Gracitellii MEC, Dotta TAG, Assuncao JH, Malavolta EA, Andrade-Silva FB, Kojima KE, Ferreira Neto AA (2017) Intraobserver and interobserver agreement in the classification and treatment of proximal humeral fractures. J Shoulder Elb Surg 26(6):1097–1102 (Jun)CrossRefGoogle Scholar
  34. 34.
    Sukthankar AV, Leonello DT, Hertel RW, Ding GS, Sandow MJ (2013) A comprehensive calssification of proximal humeral fractures: HGLS system. J Shoulder Elbow Surg 22(7):e1–6CrossRefGoogle Scholar
  35. 35.
    Murray IR, Amin AK, White TO, Robinson CM (2011) Proximal humeral fractures: current concepts in classification, treatment and outcomes. J Bone Joint Surg Br 93:1–11CrossRefGoogle Scholar
  36. 36.
    Hardeman F, Bollars P, Donnelly M, Bellemans J, Nijs S (2012) Predictive factors for functional outcome and failure in angular stable osteosynthesis of the proximal humerus. Injury 43(2):153–158CrossRefGoogle Scholar
  37. 37.
    Brunner F, Sommer C, Bahrs C, Heuwinkel R, Hafner C, Rillmann P, Kohut G, Ekelund A, Muller M, Audigé L, Babst R (2009) Open reduction and internal fixation of proximal humerus fractures using a proximal humeral locked plate: a prospective multicenter analysis. J Orthop Trauma 23(3):163–172 (Mar)CrossRefGoogle Scholar
  38. 38.
    Thanasas C, Kontakis G, Angoules A, Limb D, Giannoudis P (2009) Treatment of proximal humerus fractures with locking plates: a systematic review. J Shoulder Elb Surg 18(6):837–844CrossRefGoogle Scholar
  39. 39.
    Sproul RC, Iyengar JJ, Devcic Z, Feeley BT (2011) A systematic review of locking plate fixation of proximal humerus fractures. Injury 42(4):408–413 (Apr)CrossRefGoogle Scholar
  40. 40.
    Beeres FJP, Hallensleben NDL, Rhemrev SJ, Goslings JC, Oehme F, Meylaerts SAG, Babst R, Schep NWL (1692) Plate fixation of the proximal humerus: an international multicentre comparative study of postoperative complications. Arch Orthop Trauma Surg 137(12):1685CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • F. J. P. Beeres
    • 1
    Email author
  • O. M. Quaile
    • 1
  • B. C. Link
    • 1
  • R. Babst
    • 1
  1. 1.Klinik für Orthopädie und UnfallchirurgieLuzerner KantonsspitalLuzern 16Schweiz

Personalised recommendations