Three-dimensional thoracoscopic vertebral body replacement at the thoracolumbar junction

  • C. Jacobs
  • M. M. Plöger
  • S. Scheidt
  • P. P. Roessler
  • S. Koob
  • K. Kabir
  • C. Jacobs
  • D. C. Wirtz
  • C. Burger
  • R. Pflugmacher
  • F. Trommer
Surgical Techniques



The aim is to stabilize the thoracolumbar spine with a thoracoscopically implanted vertebral body replacement (VBR). To improve intraoperative depth perception and orientation, implantation is performed under three-dimensional (3D) thoracoscopic vision.


Vertebral burst fractures at the thoracolumbar junction (A4 AOSpine classification), pseudarthrosis, and posttraumatic instability with increasing kyphosis.


Severe pulmonary dysfunctions, pulmonary or thoracic infections, previous thoracic surgery, and pulmonary adhesions.

Surgical technique

The patient is lying in a right lateral decubitus position. Localization of the fractured vertebra. Minimally invasive transthoracic approach. Perform single lung ventilation and insert the 3D thoracoscope two intercostal spaces above the working portal. Utilization of special binocular glasses for 3D vision of the operation field and secure resection of the fractured vertebra.

Measurement of the bony defect and insertion of the expandable cage. Control of correct cage position under fluoroscopy. Insertion of a chest tube and inflate the left lung.

Postoperative management

Chest × ray

Remove chest tube when output is <500 ml/24 h

Early mobilization on the ward

6 weeks no weight-bearing >5 kg


Between 2012 and 2017, 12 patients received a VBR under 3D thoracoscopic vision. After a mean follow up of 26 months, no cage dislocation was noticed and all patients recovered from the initial back pain. Complications were notable in two cases (17%) with a small pneumothorax after removal of the chest tube and postoperative pneumonia in one patient (8%). All responded to conservative treatment. Revision surgery was not necessary.


Thoracolumbar spine Vertebral burst fracture Corporectomy Bony defect Expandable cage 

Dreidimensionaler thorakoskopischer Wirbelkörperersatz am thorakolumbalen Übergang



Wiederherstellung einer belastungsstabilen Wirbelsäule durch thorakoskopische Implantation eines Wirbelkörperersatzes. Zur Verbesserung der intraoperativen Tiefenwahrnehmung und Orientierung erfolgt die Implantation unter 3‑dimensionaler (3-D) Thorakoskopie.


Thorakolumbale Berstungsfrakturen (A4 nach AOSpine-Klassifikation), Pseudarthrose, posttraumatische Instabilität mit zunehmender Kyphose


Schwere pulmonale Dysfunktion, pulmonale oder thorakale Infektionen, thorakale Voroperationen, pulmonale Adhäsionen


Lagerung in Rechtsseitenlage auf der Vakuummatratze. Lokalisation des frakturierten Wirbelkörpers. Minimalinvasiver transthorakaler Zugang. Einlungenventilation und Einbringen des Thorakoskops 2 Interkostalräume kranial des Arbeitsportals. Nach Aufsetzen der 3‑D-Brillen entsteht ein 3‑D-Bild des Operationsgebiets und eine sichere Resektion des frakturierten Wirbelkörpers ist möglich. Ausmessen des knöchernen Defekts und Einsetzen des expandierbaren Cage. Lagekontrolle unter Bildwandler. Einlage einer Thoraxdrainage und Entfalten der linken Lunge.


Röntgenuntersuchung des Thorax a.-p.; Entfernung der Thoraxdrainage bei Fördermenge <500 ml/24 h; frühzeitige Mobilisation auf Stationsebene; 6 Wochen postoperativ kein Heben und Tragen >5 kg


Zwischen 2012 und 2017 wurde bei 12 Patienten ein Wirbelkörperersatz in 3‑D-thorakoskopischer Technik durchgeführt. Während einer durchschnittlichen Follow-up-Zeit von 26 Monaten wurde keine Implantatdislokation festgestellt. Alle Patienten beschrieben eine wesentliche Linderung der initialen Rückenschmerzen. Als Komplikation wurde bei 2 Patienten (17 %) ein schmaler Pneumothorax nach Entfernung der Thoraxdrainage festgestellt, bei einem Patienten (8 %) eine Pneumonie. Alle Komplikationen wurden erfolgreich konservativ behandelt. Revisionsoperationen waren nicht erforderlich.


Thorakolumbale Wirbelsäule Wirbelkörperberstungsfraktur Korporektomie Knöcherner Defekt Expandierbarer Cage 


Compliance with ethical guidelines

Conflict of interest

C. Jacobs, M.M. Plöger, S. Scheidt, P.P. Roessler, S. Koob, K. Kabir, C. Jacobs, D.C. Wirtz, C. Burger, R. Pflugmacher, and F. Trommer declare that they have no competing interests.

Data for this retrospective study were gathered after approval by the appropriate ethics commission of the University of Bonn (IRB 193/17) and in accordance with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Alaraimi B, El Bakbak W, Sarker S et al (2014) A randomized prospective study comparing acquisition of laparoscopic skills in three-dimensional (3D) vs. two-dimensional (2D) laparoscopy. World J Surg 38:2746–2752. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Beisse R (2007) Endoscopic treatment of spinal trauma at the thoracolumbar junction. Indian J Orthop 41:277–285. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Buia A, Stockhausen F, Filmann N, Hanisch E (2017) 2D vs. 3D imaging in laparoscopic surgery-results of a prospective randomized trial. Langenbecks Arch Surg 402:1241–1253. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chan AC, Chung SC, Yim AP et al (1997) Comparison of two-dimensional vs three-dimensional camera systems in laparoscopic surgery. Surg Endosc 11:438–440CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Hodgoson AR, Stock FE, Fang HS, Ong GB (1960) Anterior spinal fusion. The operative approach and pathological findings in 412 patients with Pott’s disease of the spine. Br J Surg 48:172–178CrossRefGoogle Scholar
  6. 6.
    Knop C, Blauth M, Bastian L et al (1997) Fractures of the thoracolumbar spine. Unfallchirurg 100:630–639. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    McLachlan G (2011) From 2D to 3D: the future of surgery? Lancet 378:1368CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Ragel BT, Amini A, Schmidt MH (2007) Thoracoscopic vertebral body replacement with an expandable cage after ventral spinal canal decompression. Neurosurgery 61:317–322. (discussion 322–3)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Romero-Loera S, Cárdenas-Lailson LE, la de Concha-Bermejillo F et al (2016) Skills comparison using a 2D vs. 3D laparoscopic simulator. Cir Cir 84:37–44. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Smith R, Day A, Rockall T et al (2012) Advanced stereoscopic projection technology significantly improves novice performance of minimally invasive surgical skills. Surg Endosc 26:1522–1527. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vaccaro AR, Oner C, Kepler CK et al (2013) AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine 38:2028–2037. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wenzl R, Lehner R, Vry U et al (1994) Three-dimensional video-endoscopy: clinical use in gynaecological laparoscopy. Lancet 344:1621–1622. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • C. Jacobs
    • 1
  • M. M. Plöger
    • 1
  • S. Scheidt
    • 1
  • P. P. Roessler
    • 1
  • S. Koob
    • 1
  • K. Kabir
    • 1
  • C. Jacobs
    • 2
  • D. C. Wirtz
    • 1
  • C. Burger
    • 1
  • R. Pflugmacher
    • 1
  • F. Trommer
    • 3
  1. 1.Klinik und Poliklinik für Orthopädie und UnfallchirurgieUniversitätsklinikum BonnBonnGermany
  2. 2.Poliklinik für KieferorthopädieUniversitätsklinikum JenaJenaGermany
  3. 3.Klinik für Unfallchirurgie und OrthopädieLuisenhospital AachenAachenGermany

Personalised recommendations