Advertisement

Frühmobilisation auf der Intensivstation

Wie ist die Evidenz?
  • Kristina FuestEmail author
  • Stefan J. Schaller
Physiotherapie

Zusammenfassung

Hintergrund

Die aktuelle Studienlage zeigt ein heterogenes Bild zur Effektivität von Frühmobilisation, d. h. Mobilisation innerhalb von 72 h nach Intensivaufnahme. Ebenfalls wird die Evidenz in aktuellen Reviews und den Leitlinien als unzureichend angesehen. Dies führt zur Unsicherheit und verminderten Umsetzung im Alltag.

Fragestellung

Wie stellt sich die aktuelle Evidenz zum Thema Frühmobilisation dar? Welche positiven Effekte sind für welche Intensivpatienten zu erwarten? Welche Lücken in der Evidenz gibt es?

Ergebnisse

Wird Mobilisation innerhalb von 72 h nach Intensivaufnahme strukturiert umgesetzt, kann ein Muskelmasseerhalt sowie eine Funktionalitätsverbesserung erwartet werden. Zusätzlich sollte die Mobilisierung in ein Maßnahmenbündel, wie das ABCDEF-Konzept, eingebettet werden. Die Umsetzung eines derartigen Gesamtkonzepts zeigte ebenfalls ein positives Outcome in großen Studien. Frühmobilisation ist sicher: Ein endotrachealer Tubus stellt per se keine Kontraindikation für eine Mobilisierung dar. Lücken in der Evidenz gibt es bei speziellen Patientengruppen: 1) bei neurologischen und neurochirurgischen Patienten, wo es lediglich Hinweise aus Beobachtungsstudien gibt und 2) bei Patienten, die zuvor funktionell abhängig waren. Sowohl die Art und Weise als auch die optimale Dosierung von Mobilisation sind hier noch unklar.

Schlussfolgerung

Frühmobilisation auf der Intensivstation ist sicher und verbessert das Outcome kritisch kranker Patienten. Weitere Studien sind notwendig, um die Frage nach der optimalen Dosierung und Dauer insbesondere bei neurologischen/neurochirurgischen Patienten zu klären.

Schlüsselwörter

Intensivmedizin Frühmobilisierung Muskelkraft Muskelschwäche Physiotherapie 

Early mobilisation on the intensive care unit

What we know

Abstract

Background

Early mobilization is defined as intervention within the first 72 h after intensive care unit (ICU) admission. According to the current state of relevant studies, evidence on early mobilization in critically ill patients is still inconsistent. This leads to insecurity in caretakers and subsequently to incomplete implementation in German ICUs.

Objectives

What type of intervention is suitable for certain patient groups? Which issues remain unresolved?

Results

To obtain best possible outcomes, early mobilization should be initiated during the first 72 h after ICU admission. Implementation of early mobilization improves clinical outcome and should be integrated in a patient-centered bundle (such as ABCDEF). Mechanical ventilation is not a contraindication to intervention. Evidence in neurocritical care as well as functionally dependent patients is still low. Mode of intervention and dosage of early mobilisation remain unclear.

Conclusion

Early mobilization is safe and feasible, resulting in improved outcomes in surgical and medical ICU patients. Further studies are necessary to evaluate the optimal dosage and duration of intervention, especially in neurocritical care patients.

Keywords

Critical care Early mobilization Muscle strength Muscle weakness Physiotherapy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

K. Fuest gibt an, dass kein Interessenkonflikt besteht. S.J. Schaller gibt den Besitz kleinerer Mengen von Wertpapieren von Firmen, die dem Gesundheitssektor angehören (Rhön-Klinikum AG, Siemens AG, Bayer AG, Alphabeth Inc.) an. Dieser Wertpapierbesitz hat die das Manuskript betreffenden Entscheidungen nicht beeinflusst.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Barnes-Daly MA, Phillips G, Ely EW (2017) Improving hospital survival and reducing brain dysfunction at seven california community hospitals: implementing PAD guidelines via the ABCDEF bundle in 6,064 patients. Crit Care Med 45:171–178CrossRefGoogle Scholar
  2. 2.
    Bein T, Bischoff M, Bruckner U et al (2015) S2e guideline: positioning and early mobilisation in prophylaxis or therapy of pulmonary disorders : revision 2015: S2e guideline of the German Society of Anaesthesiology and Intensive Care Medicine (DGAI). Anaesthesist 64(Suppl 1):1–26CrossRefGoogle Scholar
  3. 3.
    Bernhardt J, Churilov L, Ellery F et al (2016) Prespecified dose-response analysis for A Very Early Rehabilitation Trial (AVERT). Baillieres Clin Neurol 86:2138–2145Google Scholar
  4. 4.
    Boehm LM, Dietrich MS, Vasilevskis EE et al (2017) Perceptions of workload burden and adherence to ABCDE bundle among intensive care providers. Am J Crit Care 26:e38–e47CrossRefGoogle Scholar
  5. 5.
    Clarissa C, Salisbury L, Rodgers S et al (2019) Early mobilisation in mechanically ventilated patients: a systematic integrative review of definitions and activities. J Intensive Care 7:3CrossRefGoogle Scholar
  6. 6.
    Curtis L, Irwin J (2017) Ambulation of patients who are mechanically ventilated: nurses’ views. Nurs Manag (harrow) 24:34–39CrossRefGoogle Scholar
  7. 7.
    Devlin JW, Skrobik Y, Gelinas C et al (2018) Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med 46:e825–e873CrossRefGoogle Scholar
  8. 8.
    Doiron KA, Hoffmann TC, Beller EM (2018) Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit. Cochrane Database Syst Rev 3:CD10754PubMedGoogle Scholar
  9. 9.
    Eggmann S, Verra ML, Luder G et al (2018) Effects of early, combined endurance and resistance training in mechanically ventilated, critically ill patients: a randomised controlled trial. PLoS ONE 13:e207428CrossRefGoogle Scholar
  10. 10.
    Fossat G, Baudin F, Courtes L et al (2018) Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults: a randomized clinical trial. JAMA 320:368–378CrossRefGoogle Scholar
  11. 11.
    Fuest K, Schaller SJ (2018) Recent evidence on early mobilization in critical-Ill patients. Curr Opin Anaesthesiol 31:144–150CrossRefGoogle Scholar
  12. 12.
    Hermans G, Clerckx B, Vanhullebusch T et al (2012) Interobserver agreement of medical research council sum-score and handgrip strength in the intensive care unit. Muscle Nerve 45:18–25CrossRefGoogle Scholar
  13. 13.
    Herridge MS, Tansey CM, Matte A et al (2011) Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 364:1293–1304CrossRefGoogle Scholar
  14. 14.
    Hodgson CL, Bailey M, Bellomo R et al (2016) A Binational Multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU. Crit Care Med 44:1145–1152CrossRefGoogle Scholar
  15. 15.
    Hodgson CL, Stiller K, Needham DM et al (2014) Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults. Crit Care 18:658CrossRefGoogle Scholar
  16. 16.
    Hsieh SJ, Otusanya O, Gershengorn HB et al (2019) Staged implementation of awakening and breathing, coordination, delirium monitoring and management, and early mobilization bundle improves patient outcomes and reduces hospital costs. Crit Care Med.  https://doi.org/10.1097/CCM.0000000000003765 CrossRefPubMedGoogle Scholar
  17. 17.
    Johnson K, Petti J, Olson A et al (2017) Identifying barriers to early mobilisation among mechanically ventilated patients in a trauma intensive care unit. Intensive Crit Care Nurs 42:51–54CrossRefGoogle Scholar
  18. 18.
    Kayambu G, Boots R, Paratz J (2015) Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med 41:865–874CrossRefGoogle Scholar
  19. 19.
    Kress JP, Hall JB (2014) ICU-acquired weakness and recovery from critical illness. N Engl J Med 370:1626–1635CrossRefGoogle Scholar
  20. 20.
    Lachmann G, Morgeli R, Kuenz S et al (2019) Perioperatively acquired weakness. Anesth Analg.  https://doi.org/10.1213/ANE.0000000000004068 CrossRefPubMedGoogle Scholar
  21. 21.
    Morris PE, Berry MJ, Files DC et al (2016) Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA 315:2694–2702CrossRefGoogle Scholar
  22. 22.
    Moss M, Nordon-Craft A, Malone D et al (2016) A randomized trial of an intensive physical therapy program for patients with acute respiratory failure. Am J Respir Crit Care Med 193:1101–1110CrossRefGoogle Scholar
  23. 23.
    Nydahl P, Sricharoenchai T, Chandra S et al (2017) Safety of patient mobilization and rehabilitation in the intensive care unit. Systematic review with meta-analysis. Ann Am Thorac Soc 14:766–777CrossRefGoogle Scholar
  24. 24.
    Pun BT, Balas MC, Barnes-Daly MA et al (2019) Caring for critically ill patients with the ABCDEF bundle: results of the ICU liberation collaborative in over 15,000 adults. Crit Care Med 47:3–14CrossRefGoogle Scholar
  25. 25.
    Puthucheary ZA, Rawal J, Mcphail M et al (2013) Acute skeletal muscle wasting in critical illness. JAMA 310:1591–1600CrossRefGoogle Scholar
  26. 26.
    Rebel A, Marzano V, Green M et al (2019) Mobilisation is feasible in intensive care patients receiving vasoactive therapy: an observational study. Aust Crit Care 32:139–146CrossRefGoogle Scholar
  27. 27.
    Schaller SJ, Anstey M, Blobner M et al (2016) Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet 388:1377–1388CrossRefGoogle Scholar
  28. 28.
    Schaller SJ, Scheffenbichler FT, Bose S et al (2019) Influence of the initial level of consciousness on early, goal-directed mobilization: a post hoc analysis. Intensive Care Med 45:201–210CrossRefGoogle Scholar
  29. 29.
    Schaller SJ, Stauble CG, Suemasa M et al (2016) The German validation study of the surgical intensive care unit optimal mobility score. J Crit Care 32:201–206CrossRefGoogle Scholar
  30. 30.
    Schweickert WD, Pohlman MC, Pohlman AS et al (2009) Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373:1874–1882CrossRefGoogle Scholar
  31. 31.
    Titsworth WL, Hester J, Correia T et al (2012) The effect of increased mobility on morbidity in the neurointensive care unit. J Neurosurg 116:1379–1388CrossRefGoogle Scholar
  32. 32.
    Wollersheim T, Grunow JJ, Carbon NM et al (2019) Muscle wasting and function after muscle activation and early protocol-based physiotherapy: an explorative trial. J Cachexia Sarcopenia Muscle.  https://doi.org/10.1002/jcsm.1242 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wright SE, Thomas K, Watson G et al (2018) Intensive versus standard physical rehabilitation therapy in the critically ill (EPICC): a multicentre, parallel-group, randomised controlled trial. Thorax 73:213–221CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinikum rechts der Isar, Klinik für Anästhesiologie und IntensivmedizinTechnische Universität MünchenMünchenDeutschland

Personalised recommendations