Advertisement

Akutbehandlung der intrazerebralen Blutung

  • J. A. Sembill
  • J. B. KuramatsuEmail author
Leitthema
  • 220 Downloads

Zusammenfassung

Hintergrund

Die intrazerebrale Blutung (ICB) ist eine der schwersten Schlaganfallformen und vergesellschaftet mit einer hohen Morbidität sowie Mortalität. Allerdings gibt es bislang keine effektiven Therapiestrategien, die den funktionellen Zustand nachhaltig verbessern.

Ziel der Arbeit

Dieser Übersichtsbeitrag evaluiert aktuelle Entwicklungen der Akutbehandlung einer ICB.

Material und Methoden

Bewertung und Interpretation der aktuellen Evidenzlage zur ICB-Therapie mit Schwerpunkt auf bedeutenden Studien der letzten 3 Jahre.

Ergebnisse

Die Rate der Hämatomprogression – des vielleicht wichtigsten Prognosefaktors – kann mithilfe eines aggressiven Blutdruckmanagements (systolischer Zieldruck 140 mm Hg) reduziert werden. Bei ICB unter oraler Antikoagulation muss sofort die Gerinnungshemmung antagonisiert werden: Vitamin-K-Antagonisten mittels Prothrombinkomplexkonzentraten, Dabigatran mittels Idarucizumab, Faktor-Xa-Inhibitoren mittels Andexanet, sofern verfügbar, oder mit hoch dosiertem Prothrombinkomplexkonzentrat. Die chirurgische Hämatomevakuation, sowohl offen als auch minimal-invasiv, kann aktuell nicht routinemäßig empfohlen werden. Bei Patienten mit ICB und einem Ventrikeleinbruch stellt die intraventrikuläre Fibrinolyse mit oder ohne zusätzliche lumbale Drainage eine vielversprechende Therapieoption dar.

Schlussfolgerung

Mehrere randomisierte und große Beobachtungsstudien haben in den letzten Jahren eine robuste Evidenz zur Behandlung der ICB generiert. Allerdings fehlt noch immer die eine durchgreifende Therapiestrategie, die den funktionellen Zustand signifikant verbessert. Dennoch hat möglicherweise die Summe verschiedener miteinander interagierender Behandlungskonzepte das Potenzial, das Outcome von Patienten mit ICB günstig zu beeinflussen.

Schlüsselwörter

Intrazerebrale Blutung, Therapieergebnis Orale Antikoagulanzien Blutdruck Intraventrikuläre Fibrinolyse Lumbaldrainage 

Abkürzungen

CT

Computertomographie

GFP

Gefrorenes Frischplasma

HP

Hämatomprogression

ICB

Intrazerebrale Blutung

INR

International Normalized Ratio

IVB

Intraventrikuläre Blutung

KI

Konfidenzintervall

mRS

Modifizierte Rankin-Skala

NOAK

Nicht-Vitamin-K-abhängige orale Antikoagulanzien

OAK

Orale Antikoagulation

OR

Odds Ratio

PPSB

Prothrombinkomplexkonzentrat

rFVIIa

Rekombinanter Faktor VIIa

RR

Relatives Risiko

TAH

Thrombozytenaggregationshemmer

TXA

Tranexamsäure

VKA

Vitamin-K-Antagonisten

Acute treatment of intracerebral hemorrhage

Abstract

Background

Intracerebral hemorrhage (ICH) represents one of the most severe forms of stroke with high morbidity and mortality; however, effective treatment options to significantly improve patient outcome do not exist so far.

Objective

This review article evaluates the most recent developments in acute ICH treatment.

Material and methods

Analysis and interpretation of currently available evidence regarding ICH treatment, focusing on the most important studies from the last 3 years.

Results

Hematoma enlargement, perhaps the most important prognostic factor, should be counteracted by aggressive blood pressure management (targeted systolic pressure 140 mm Hg). In cases of ICH under oral anticoagulation, inhibition of coagulation must be immediately antagonized: vitamin K antagonists with prothrombin complex concentrates (PCC), idarucizumab for dabigatran and andexanet if available or high-dose PCC for factor Xa inhibitors. Currently, surgical treatment strategies, both open and minimally invasive, to evacuate the hematoma can currently not be routinely recommended. In patients with intraventricular ICH, treatment with intraventricular fibrinolysis with or without additional lumbar drainage represents a promising treatment option.

Conclusion

In recent years, several randomized controlled and observational studies have generated robust evidence regarding ICH treatment; however, there is still no single breakthrough intervention, which significantly improves patient functional outcome. Nevertheless, the sum of various, possibly interacting treatment concepts may potentially improve outcome after ICH.

Keywords

Intracerebral hemorrhage, treatment outcome Anticoagulants, oral Blood pressure Fibrinolysis, intraventricular Drainage, lumbar 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J.A. Sembill und J.B. Kuramatsu geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Al-Shahi Salman R, Frantzias J, Lee RJ et al (2018) Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. Lancet Neurol 17:885–894CrossRefGoogle Scholar
  2. 2.
    Anderson CS, Heeley E, Huang Y et al (2013) Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med 368:2355–2365CrossRefGoogle Scholar
  3. 3.
    Anderson CS, Huang Y, Arima H et al (2010) Effects of early intensive blood pressure-lowering treatment on the growth of hematoma and perihematomal edema in acute intracerebral hemorrhage: the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT). Stroke 41:307–312CrossRefGoogle Scholar
  4. 4.
    Baharoglu MI, Cordonnier C, Salman RA et al (2016) Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. Lancet 387:2605–2613CrossRefGoogle Scholar
  5. 5.
    Boulouis G, Morotti A, Goldstein JN et al (2017) Intensive blood pressure lowering in patients with acute intracerebral haemorrhage: clinical outcomes and haemorrhage expansion. Systematic review and meta-analysis of randomised trials. J Neurol Neurosurg Psychiatry 88:339–345CrossRefGoogle Scholar
  6. 6.
    Butcher KS, Jeerakathil T, Hill M et al (2013) The Intracerebral hemorrhage acutely decreasing arterial pressure trial. Stroke 44:620–626CrossRefGoogle Scholar
  7. 7.
    Chatterjee S, Sardar P, Biondi-Zoccai G et al (2013) New oral anticoagulants and the risk of intracranial hemorrhage: traditional and Bayesian meta-analysis and mixed treatment comparison of randomized trials of new oral anticoagulants in atrial fibrillation. Jama Neurol 70:1486–1490PubMedGoogle Scholar
  8. 8.
    Connolly SJ, Crowther M, Eikelboom JW et al (2019) Full study report of Andexanet alfa for bleeding associated with factor Xa inhibitors. N Engl J Med.  https://doi.org/10.1056/NEJMoa1814051 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Demchuk AM, Dowlatshahi D, Rodriguez-Luna D et al (2012) Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol 11:307–314CrossRefGoogle Scholar
  10. 10.
    Gerner ST, Kuramatsu JB, Sembill JA et al (2018) Association of prothrombin complex concentrate administration and hematoma enlargement in non-vitamin K antagonist oral anticoagulant-related intracerebral hemorrhage. Ann Neurol 83:186–196CrossRefGoogle Scholar
  11. 11.
    Hanley DF, Lane K, Mcbee N et al (2017) Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet 389:603–611CrossRefGoogle Scholar
  12. 12.
    Hanley DF, Thompson RE, Rosenblum M et al (2019) Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet.  https://doi.org/10.1016/S0140-6736(19)30195-3 CrossRefPubMedGoogle Scholar
  13. 13.
    Hemphill JC 3rd, Greenberg SM, Anderson CS et al (2015) Guidelines for the management of spontaneous Intracerebral hemorrhage: a guideline for Healthcare professionals from the American heart association/American stroke association. Stroke 46:2032–2060CrossRefGoogle Scholar
  14. 14.
    Inohara T, Xian Y, Liang L et al (2018) Association of Intracerebral hemorrhage among patients taking non-vitamin K antagonist vs vitamin K antagonist oral anticoagulants with in-hospital mortality. JAMA 319:463–473CrossRefGoogle Scholar
  15. 15.
    Krishnamurthi RV, Feigin VL, Forouzanfar MH et al (2013) Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health 1:e259–281CrossRefGoogle Scholar
  16. 16.
    Kuramatsu JB, Gerner ST, Schellinger PD et al (2015) Anticoagulant reversal, blood pressure levels, and anticoagulant resumption in patients with anticoagulation-related intracerebral hemorrhage. JAMA 313:824–836CrossRefGoogle Scholar
  17. 17.
    Kuramatsu JB, Huttner HB (2019) Management of oral anticoagulation after intracerebral hemorrhage. Int J Stroke.  https://doi.org/10.1177/1747493019828555 CrossRefPubMedGoogle Scholar
  18. 18.
    Kuramatsu JB, Sembill JA, Gerner ST et al (2018) Management of therapeutic anticoagulation in patients with intracerebral haemorrhage and mechanical heart valves. Eur Heart J 39:1709–1723CrossRefGoogle Scholar
  19. 19.
    Mayer SA, Brun NC, Begtrup K et al (2008) Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 358:2127–2137CrossRefGoogle Scholar
  20. 20.
    Mendelow AD, Gregson BA, Fernandes HM et al (2005) Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet 365:387–397CrossRefGoogle Scholar
  21. 21.
    Mendelow AD, Gregson BA, Rowan EN et al (2013) Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet 382:397–408CrossRefGoogle Scholar
  22. 22.
    Morotti A, Boulouis G, Romero JM et al (2017) Blood pressure reduction and noncontrast CT markers of intracerebral hemorrhage expansion. Baillieres Clin Neurol 89:548–554Google Scholar
  23. 23.
    Morotti A, Brouwers HB, Romero JM et al (2017) Intensive blood pressure reduction and spot sign in Intracerebral hemorrhage: a secondary analysis of a randomized clinical trial. Jama Neurol 74:950–960CrossRefGoogle Scholar
  24. 24.
    Murthy SB, Awad I, Harnof S et al (2017) Permanent CSF shunting after intraventricular hemorrhage in the CLEAR III trial. Baillieres Clin Neurol 89:355–362Google Scholar
  25. 25.
    Pollack CV Jr., Reilly PA, Van Ryn J et al (2017) Idarucizumab for Dabigatran reversal—full cohort analysis. N Engl J Med 377:431–441CrossRefGoogle Scholar
  26. 26.
    Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373:1632–1644CrossRefGoogle Scholar
  27. 27.
    Qureshi AI, Palesch YY, Barsan WG et al (2016) Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med 375:1033–1043CrossRefGoogle Scholar
  28. 28.
    Qureshi AI, Palesch YY, Foster LD et al (2018) Blood pressure-attained analysis of ATACH 2 trial. Stroke 49:1412–1418CrossRefGoogle Scholar
  29. 29.
    Sembill JA, Gerner ST, Volbers B et al (2017) Severity assessment in maximally treated ICH patients: The max-ICH score. Baillieres Clin Neurol 89:423–431Google Scholar
  30. 30.
    Sembill JA, Huttner HB, Kuramatsu JB (2018) Impact of recent studies for the treatment of Intracerebral hemorrhage. Curr Neurol Neurosci Rep 18:71CrossRefGoogle Scholar
  31. 31.
    Sprigg N, Flaherty K, Appleton JP et al (2018) Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet.  https://doi.org/10.1016/S0140-6736(18)31033-X CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Staykov D, Kuramatsu JB, Bardutzky J et al (2017) Efficacy and safety of combined intraventricular fibrinolysis with lumbar drainage for prevention of permanent shunt dependency after intracerebral hemorrhage with severe ventricular involvement: a randomized trial and individual patient data meta-analysis. Ann Neurol 81:93–103CrossRefGoogle Scholar
  33. 33.
    Steiner T, Poli S, Griebe M et al (2016) Fresh frozen plasma versus prothrombin complex concentrate in patients with intracranial haemorrhage related to vitamin K antagonists (INCH): a randomised trial. Lancet Neurol 15:566–573CrossRefGoogle Scholar
  34. 34.
    Tsivgoulis G, Katsanos AH, Butcher KS et al (2014) Intensive blood pressure reduction in acute intracerebral hemorrhage: a meta-analysis. Baillieres Clin Neurol 83:1523–1529Google Scholar
  35. 35.
    Tsivgoulis G, Wilson D, Katsanos AH et al (2018) Neuroimaging and clinical outcomes of oral anticoagulant-associated intracerebral hemorrhage. Ann Neurol 84:694–704CrossRefGoogle Scholar
  36. 36.
    Van Asch CJ, Luitse MJ, Rinkel GJ et al (2010) Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 9:167–176CrossRefGoogle Scholar
  37. 37.
    Volbers B, Giede-Jeppe A, Gerner ST et al (2018) Peak perihemorrhagic edema correlates with functional outcome in intracerebral hemorrhage. Baillieres Clin Neurol 90:e1005–e1012Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für NeurologieUniversitätsklinikum ErlangenErlangenDeutschland

Personalised recommendations