Advertisement

PROtokollbasierte MObilisierung auf IntensivstaTIONen

Design einer clusterrandomisierten Pilotstudie
  • P. Nydahl
  • A. Diers
  • U. Günther
  • B. Haastert
  • S. Hesse
  • C. Kerschensteiner
  • S. Klarmann
  • S. Köpke
Pflege

Zusammenfassung

Hintergrund

Trotz überzeugender Studienlage zur Frühmobilisierung von Patienten auf Intensivstationen ist deren Umsetzung in der Praxis begrenzt. Protokolle zur Frühmobilisierung mit Ein- und Ausschlusskriterien, Assessments, Sicherheitskriterien und Stufenschemas können die Umsetzungs- und Mobilisierungsrate unterstützen.

Hypothese

Patienten (Population), die sich auf Intensivstationen befinden, auf denen ein Protokoll zur Frühmobilisierung implementiert wird (Intervention), werden im Vergleich zu Patienten auf Intensivstationen, die über kein Protokoll verfügen (Kontrolle), häufiger aus dem Bett mobilisiert (Outcome).

Methode

Es wird eine multizentrische „stepped-wedge“ clusterrandomisierte Pilotstudie dargestellt. Fünf Intensivstationen erhalten ein an die jeweilige Intensivstation adaptiertes interprofessionelles Protokoll zur Frühmobilisierung. Die Implementierung des Protokolls erfolgt auf den Intensivstationen in randomisierter monatlicher Reihenfolge. Vor und nach der Implementierung werden einmal pro Monat 1‑Tages-Prävalenzerhebungen zur Mobilisierung der Intensivpatienten durchgeführt. Primärer Outcomeparameter ist die Rate der Patienten, die aus dem Bett mobilisiert werden, operationalisiert anhand eines Werts von ≥3 auf der Intensive Care Unit Mobility Scale. Sekundäre Outcomeparameter sind Beatmungs- und Verweildauer, Delirrate und -dauer, patientenspezifische Barrieren zur Mobilisierung, unerwünschte Sicherheitsereignisse während der Mobilisierung, Anteil von erreichten Mobilisierungszielen und Prozessparameter wie Barrieren, Strategien und Protokollanpassungen.

Erwartete Ergebnisse

Die Machbarkeit wird exemplarisch überprüft und die Effektstärke als Grundlage für eine spätere explanatorische Studie abgeschätzt.

Schlüsselwörter

Intensivmedizin Frühmobilisierung Klinische Studie Klinisches Protokoll Ergebniseinschätzung 

PROtocol-based MObilizaTION on intensive care units

Design of a cluster randomized pilot study

Abstract

Background

Despite convincing evidence for early mobilization of patients on intensive care units (ICU), implementation in practice is limited. Protocols for early mobilization, including in- and exclusion criteria, assessments, safety criteria, and step schemes may increase the rate of implementation and mobilization.

Hypothesis

Patients (population) on ICUs with a protocol for early mobilization (intervention), compared to patients on ICUs without protocol (control), will be more frequently mobilized (outcome).

Methods

A multicenter, stepped-wedge, cluster-randomized pilot study is presented. Five ICUs will receive an adapted, interprofessional protocol for early mobilization in randomized order. Before and after implementation, mobilization of ICU patients will be evaluated by randomized monthly one-day point prevalence surveys. Primary outcome is the percentage of patients mobilized out of bed, operationalized as a score of ≥3 on the ICU Mobility Scale. Secondary outcome parameters will be presence and/or length of mechanical ventilation, delirium, stay on ICU and in hospital, barriers to early mobilization, adverse events, and process parameters as identified barriers, used strategies, and adaptions to local conditions.

Expected results

Exploratory evaluation of study feasibility and estimation of effect sizes as the basis for a future explanatory study.

Keywords

Intensive care  Early ambulation Clinical trial Clinical protocol Outcome assessment 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

P. Nydahl, A. Diers, U. Günther, B. Haastert, S. Hesse, C. Kerschensteiner, S. Klarmann und S. Köpke geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Supplementary material

63_2017_358_MOESM1_ESM.pdf (283 kb)
PRO-MOTION: Studienprotokoll einer stepped-wedge, cluster randomisierten Pilotstudie zur PROtokoll-basierten MObilisierung auf IntensivstaTION

Literatur

  1. 1.
    Needham DM, Davidson J, Cohen H, Hopkins RO, Weinert C, Wunsch H et al (2012) Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders’ conference. Crit Care Med 40(2):502–509CrossRefGoogle Scholar
  2. 2.
    Brower RG (2009) Consequences of bed rest. Crit Care Med 37(10):422–428CrossRefGoogle Scholar
  3. 3.
    Puthucheary ZA, Phadke R, Rawal J, McPhail MJ, Sidhu PS, Rowlerson A et al (2015) Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med 43(8):1603–1611CrossRefGoogle Scholar
  4. 4.
    Herridge MS, Chu LM, Matte A, Tomlinson G, Chan L, Thomas C et al (2016) The RECOVER program: disability risk groups and 1‑year outcome after 7 or more days of mechanical ventilation. Am J Respir Crit Care Med 194(7):831–844CrossRefGoogle Scholar
  5. 5.
    Jolley SE, Moss M, Needham DM, Caldwell E, Morris PE, Miller RR et al (2016) Point prevalence study of mobilization practices for acute respiratory failure patients in the united states. Crit Care Med 45(2):205–215.  https://doi.org/10.1097/CCM.0000000000002058 CrossRefGoogle Scholar
  6. 6.
    Adler J, Malone D (2012) Early mobilization in the intensive care unit: a systematic review. Cardiopulm Phys Ther J 23(1):5–13PubMedPubMedCentralGoogle Scholar
  7. 7.
    Stiller K (2013) Physiotherapy in intensive care: an updated systematic review. Chest 144(3):825–847CrossRefGoogle Scholar
  8. 8.
    Li Z, Peng X, Zhu B, Zhang Y, Xi X (2013) Active mobilization for mechanically ventilated patients: a systematic review. Arch Phys Med Rehabil 94(3):551–561CrossRefGoogle Scholar
  9. 9.
    Tipping CJ, Harrold M, Holland A, Romero L, Nisbet T, Hodgson CL (2016) The effects of active mobilisation and rehabilitation in ICU on mortality and function: a systematic review. Intensive Care Med 43(2):171–183.  https://doi.org/10.1007/s00134-016-4612-0 CrossRefPubMedGoogle Scholar
  10. 10.
    Bein T, Bischoff M, Bruckner U, Gebhardt K, Henzler D, Hermes C et al (2015) S2e guideline: positioning and early mobilisation in prophylaxis or therapy of pulmonary disorders : Revision 2015: S2e guideline of the German Society of Anaesthesiology and Intensive Care Medicine (DGAI). Anaesthesist 64(Suppl 1):1–26.  https://doi.org/10.1007/s00101-015-0071-1 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L et al (2008) Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med 36(8):2238–2243CrossRefGoogle Scholar
  12. 12.
    Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL et al (2009) Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373(9678):1874–1882CrossRefGoogle Scholar
  13. 13.
    Needham DM, Korupolu R, Zanni JM, Pradhan P, Colantuoni E, Palmer JB et al (2010) Early physical medicine and rehabilitation for patients with acute respiratory failure: a quality improvement project. Arch Phys Med Rehabil 91(4):536–542CrossRefGoogle Scholar
  14. 14.
    Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I et al (2016) Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet 388(10052):1377–1388CrossRefGoogle Scholar
  15. 15.
    Bailey P, Thomsen GE, Spuhler VJ, Blair R, Jewkes J, Bezdjian L et al (2007) Early activity is feasible and safe in respiratory failure patients. Crit Care Med 35(1):139–145CrossRefGoogle Scholar
  16. 16.
    Perme C, Lettvin C, Throckmorton TA, Mitchell K, Masud F (2011) Early mobility and walking for patients with femoral arterial catheters in intensive care unit: a case series. J Acute Care Phys Ther 2(1):32–36CrossRefGoogle Scholar
  17. 17.
    Perme C, Nalty T, Winkelman C, Kenji Nawa R, Masud F (2013) Safety and efficacy of mobility interventions in patients with femoral catheters in the ICU: a prospective observational study. Cardiopulm Phys Ther J 24(2):12–17PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kho ME, Damluji A, Zanni JM, Needham DM (2012) Feasibility and observed safety of interactive video games for physical rehabilitation in the intensive care unit: a case series. J Crit Care 27(2):219.e1–219.e6CrossRefGoogle Scholar
  19. 19.
    Wang YT, Haines TP, Ritchie P, Walker C, Ansell TA, Ryan DT et al (2014) Early mobilization on continuous renal replacement therapy is safe and may improve filter life. Crit Care 18(4):R161CrossRefGoogle Scholar
  20. 20.
    Nievera RA, Fick A, Harris HK (2016) Effects of ambulation and nondependent transfers on vital signs in patients receiving norepinephrine. Am J Crit Care 26(1):31–36CrossRefGoogle Scholar
  21. 21.
    Perme CS, Southard RE, Joyce DL, Noon GP, Loebe M (2006) Early mobilization of LVAD recipients who require prolonged mechanical ventilation. Tex Heart Inst J 33(2):130–133PubMedPubMedCentralGoogle Scholar
  22. 22.
    Abrams D, Javidfar J, Farrand E, Mongero LB, Agerstrand CL, Ryan P et al (2014) Early mobilization of patients receiving extracorporeal membrane oxygenation: a retrospective cohort study. Crit Care 18(1):R38CrossRefGoogle Scholar
  23. 23.
    Davis J, Crawford K, Wierman H, Osgood W, Cavanaugh J, Smith KA et al (2013) Mobilization of ventilated older adults. J Geriatr Phys Ther 36(4):162–168CrossRefGoogle Scholar
  24. 24.
    Genc A, Ozyurek S, Koca U, Gunerli A (2012) Respiratory and hemodynamic responses to mobilization of critically ill obese patients. Cardiopulm Phys Ther J 23(1):14–18PubMedPubMedCentralGoogle Scholar
  25. 25.
    Clark DE, Lowman JD, Griffin RL, Matthews HM, Reiff DA (2013) Effectiveness of an early mobilization protocol in a trauma and burns intensive care unit: a retrospective cohort study. Phys Ther 93(2):186–196CrossRefGoogle Scholar
  26. 26.
    Olkowski BF, Devine MA, Slotnick LE, Veznedaroglu E, Liebman KM, Arcaro ML et al (2013) Safety and feasibility of an early mobilization program for patients with aneurysmal subarachnoid hemorrhage. Phys Ther 93(2):208–215CrossRefGoogle Scholar
  27. 27.
    Zafiropoulos B, Alison JA, McCarren B (2004) Physiological responses to the early mobilisation of the intubated, ventilated abdominal surgery patient. Aust J Physiother 50(2):95–100CrossRefGoogle Scholar
  28. 28.
    Titsworth WL, Hester J, Correia T, Reed R, Guin P, Archibald L et al (2012) The effect of increased mobility on morbidity in the neurointensive care unit. J Neurosurg 116(6):1379–1388CrossRefGoogle Scholar
  29. 29.
    Nydahl P, Sricharoenchai T, Saurabh C, Kundt FS, Huang M, Fischill M et al (2017) Safety of patient mobilization and rehabilitation in the ICU: systematic review with meta-analysis. Ann Am Thorac Soc 14(5):766–777.  https://doi.org/10.1513/AnnalsATS.201611-843SR CrossRefPubMedGoogle Scholar
  30. 30.
    Dubb R, Nydahl P, Hermes C, Schwabbauer N, Toonstra A, Parker AM et al (2016) Barriers and strategies for early mobilization of patients in intensive care units. Ann Am Thorac Soc 13(5):724–730.  https://doi.org/10.1513/AnnalsATS.201509-586CME CrossRefPubMedGoogle Scholar
  31. 31.
    Nydahl P, Dubb R, Filipovic S, Hermes C, Jüttner F, Kaltwasser A et al (2016) Algorithms for early mobilization in intensive care units. Med Klin Intensivmed Notfmed 112(2):156–162.  https://doi.org/10.1007/s00063-016-0210-8 CrossRefPubMedGoogle Scholar
  32. 32.
    Nydahl P, Ruhl AP, Bartoszek G, Dubb R, Filipovic S, Flohr HJ et al (2014) Early mobilization of mechanically ventilated patients: a 1-day point-prevalence study in Germany. Crit Care Med 42(5):1178–1186CrossRefGoogle Scholar
  33. 33.
    Berney SC, Harrold M, Webb SA, Seppelt I, Patman S, Thomas PJ et al (2013) Intensive care unit mobility practices in Australia and New Zealand: a point prevalence study. Crit Care Resusc 15(4):260–265PubMedGoogle Scholar
  34. 34.
    Team Study Investigators, Hodgson C, Bellomo R, Berney S, Bailey M, Buhr H et al (2015) Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study. Crit Care 19:81.  https://doi.org/10.1186/s13054-015-0765-4 CrossRefGoogle Scholar
  35. 35.
    Hodgson CL, Bailey M, Bellomo R, Berney S, Buhr H, Denehy L et al (2016) A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU. Crit Care Med 44(6):1145–1152CrossRefGoogle Scholar
  36. 36.
    Bakhru RN, McWilliams DJ, Wiebe DJ, Spuhler VJ, Schweickert WD (2016) Intensive care unit structure variation and implications for early mobilization practices. An international survey. Ann Am Thorac Soc 13(9):1527–1537CrossRefGoogle Scholar
  37. 37.
    Hodgson CL, Stiller K, Needham DM, Tipping CJ, Harrold M, Baldwin CE et al (2014) Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults. Crit Care 18(6):658CrossRefGoogle Scholar
  38. 38.
    Berry A, Beatti K, Bennett J, Cross Y, Cushway S, Hassan A, Longhurst E, Moore R, Phillips D, Plowman E, Scott J, Thomas L, Elliott D (2014) Physical activity and movement: a guideline for critically ill adultsGoogle Scholar
  39. 39.
    Parry SM, Granger CL, Berney S, Jones J, Beach L, El-Ansary D et al (2015) Assessment of impairment and activity limitations in the critically ill: a systematic review of measurement instruments and their clinimetric properties. Intensive Care Med 41(5):744–762CrossRefGoogle Scholar
  40. 40.
    Hodgson C, Needham D, Haines K, Bailey M, Ward A, Harrold M et al (2014) Feasibility and inter-rater reliability of the ICU mobility scale. Heart Lung 43(1):19–24CrossRefGoogle Scholar
  41. 41.
    Nydahl P, Ewers A, Brodda D (2014) Complications related to early mobilization of mechanically ventilated patients on intensive care units. Nurs Crit Care 21(6):323–333.  https://doi.org/10.1111/nicc.12134 CrossRefGoogle Scholar
  42. 42.
    Hildreth AN, Enniss T, Martin RS, Miller PR, Mitten-Long D, Gasaway J et al (2010) Surgical intensive care unit mobility is increased after institution of a computerized mobility order set and intensive care unit mobility protocol: a prospective cohort analysis. Am Surg 76(8):818–822PubMedGoogle Scholar
  43. 43.
    Dafoe S, Chapman MJ, Edwards S, Stiller K (2015) Overcoming barriers to the mobilisation of patients in an intensive care unit. Anaesth Intensive Care 43(6):719–727PubMedGoogle Scholar
  44. 44.
    Hanafin SS, Cowley S, Griffiths P (2004) An application of the mini review to a complex methodological question: how best to research public health nursing and service quality? Int J Nurs Stud 41(7):799–811CrossRefGoogle Scholar
  45. 45.
    Chan A‑W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K et al (2013) SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med 158(3:200–207CrossRefGoogle Scholar
  46. 46.
    Copas AJ, Lewis JJ, Thompson JA, Davey C, Baio G, Hargreaves JR (2015) Designing a stepped wedge trial: three main designs, carry-over effects and randomisation approaches. Trials 16:352CrossRefGoogle Scholar
  47. 47.
    Mdege ND, Man M‑S, Nee Brown TCA, Torgerson DJ (2011) Systematic review of stepped wedge cluster randomized trials shows that design is particularly used to evaluate interventions during routine implementation. J Clin Epidemiol 64(9):936–948CrossRefGoogle Scholar
  48. 48.
    Hawe P, Shiell A, Riley T (2004) Complex interventions: how “out of control” can a randomised controlled trial be? BMJ 328(7455):1561–1563CrossRefGoogle Scholar
  49. 49.
    Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M (2013) Developing and evaluating complex interventions: the new Medical Research Council guidance. Int J Nurs Stud 50(5):587–592CrossRefGoogle Scholar
  50. 50.
    Kayambu G, Boots R, Paratz J (2013) Physical therapy for the critically ill in the ICU: a systematic review and meta-analysis. Crit Care Med 41(6):1543–1554CrossRefGoogle Scholar
  51. 51.
    Nydahl P, Dubb R, Filipovic S, Hermes C, Jüttner F, Kaltwasser A et al (2016) Algorithmen und Checklisten unterstützen Frühmobilisierung. Pflegen Intensiv 7(4):12–19Google Scholar
  52. 52.
    Moore GF, Audrey S, Barker M, Bond L, Bonell C, Hardeman W et al (2015) Process evaluation of complex interventions: Medical Research Council guidance. BMJ 350:h1258CrossRefGoogle Scholar
  53. 53.
    Amidei C (2012) Measurement of physiologic responses to mobilisation in critically ill adults. Intensive Crit Care Nurs 28(2):58–72CrossRefGoogle Scholar
  54. 54.
    Nydahl P, Dewes M, Dubb R, Filipovic S, Hermes C, Juttner F et al (2016) Frühmobilisierung: Kompetenzen, Verantwortungen, Zuständigkeiten. Med Klin Intensivmed Notfmed 111(2):153–159CrossRefGoogle Scholar
  55. 55.
    Research Randomizer. www.randomizer.org. Zugegriffen: 13. September 2017
  56. 56.
    Tipping CJ, Bailey MJ, Bellomo R, Berney S, Buhr H, Denehy L et al (2016) The ICU mobility scale has construct and predictive validity and is responsive: a multicenter observational study. Ann Am Thorac Soc 13(6):887–893.  https://doi.org/10.1513/AnnalsATS.201510-717OC CrossRefPubMedGoogle Scholar
  57. 57.
    Corbie-Smith GVC, Kernan WN, Brass LM, Sarrel P, Horwitz RI (2003) Influence of race, clinical, and other socio-demographic features on trial participation. J Clin Epidemiol 56(4):304–309CrossRefGoogle Scholar
  58. 58.
    DAS-Taskforce, Baron R, Binder A, Biniek R, Braune S, Buerkle H et al (2015) Evidence and consensus based guideline for the management of delirium, analgesia, and sedation in intensive care medicine. Revision 2015 (DAS-Guideline 2015) – short version. Ger Med Sci 13:Doc19Google Scholar
  59. 59.
    McDermid RC, Stelfox HT, Bagshaw SM (2011) Frailty in the critically ill: a novel concept. Crit Care 15(1):301CrossRefGoogle Scholar
  60. 60.
    Bagshaw M, Majumdar SR, Rolfson DB, Ibrahim Q, McDermid RC, Stelfox HT (2016) A prospective multicenter cohort study of frailty in younger critically ill patients. Crit Care 20(1):175CrossRefGoogle Scholar
  61. 61.
    Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I et al (2005) A global clinical measure of fitness and frailty in elderly people. CMAJ 173(5):489–495CrossRefGoogle Scholar
  62. 62.
    Gusmao-Flores D, Salluh JIF, Chalhub RÁ, Quarantini LC (2012) The confusion assessment method for the intensive care unit (CAM-ICU) and intensive care delirium screening checklist (ICDSC) for the diagnosis of delirium: a systematic review and meta-analysis of clinical studies. Crit Care 16(4):R115CrossRefGoogle Scholar
  63. 63.
    Colantuoni E, Dinglas VD, Ely EW, Hopkins RO, Needham DM (2016) Statistical methods for evaluating delirium in the ICU. Lancet Respir Med 4(7):534–536CrossRefGoogle Scholar
  64. 64.
    Cabré L, Mancebo J, Solsona JF, Saura P, Gich I, Blanch L et al (2005) Multicenter study of the multiple organ dysfunction syndrome in intensive care units: the usefulness of sequential organ failure assessment scores in decision making. Intensive Care Med 31(7):927–933CrossRefGoogle Scholar
  65. 65.
    Pettilä V, Pettilä M, Sarna S, Voutilainen P, Takkunen O (2002) Comparison of multiple organ dysfunction scores in the prediction of hospital mortality in the critically ill. Crit Care Med 30(8):1705–1711CrossRefGoogle Scholar
  66. 66.
    Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22(7:707–710CrossRefGoogle Scholar
  67. 67.
    Hussey MA, Hughes JP (2007) Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials 28(2):182–191CrossRefGoogle Scholar
  68. 68.
    Woertman W, de Hoop E, Moerbeek M, Zuidema SU, Gerritsen DL, Teerenstra S (2013) Stepped wedge designs could reduce the required sample size in cluster randomized trials. J Clin Epidemiol 66(7):752–758CrossRefGoogle Scholar
  69. 69.
    Hemming K, Girling A, Martin J, Bond SJ (2013) Stepped wedge cluster randomized trials are efficient and provide a method of evaluation without which some interventions would not be evaluated. J Clin Epidemiol 66(9):1058–1059CrossRefGoogle Scholar
  70. 70.
    Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D et al (2014) Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ 348:g1687CrossRefGoogle Scholar
  71. 71.
    Möhler R, Köpke S, Meyer G (2015) Criteria for reporting the development and evaluation of complex interventions in healthcare: revised guideline (CreDECI 2). Trials 16:204CrossRefGoogle Scholar
  72. 72.
    Latronico N, Herridge M, Hopkins RO, Angus D, Hart N, Hermans G et al (2017) The ICM research agenda on intensive care unit-acquired weakness. Intensive Care Med 43(9):1270–1281.  https://doi.org/10.1007/s00134-017-4757-5 CrossRefPubMedGoogle Scholar
  73. 73.
    International Committee of Medical Journal Editors. www.icmje.org. Zugegriffen: 13. September 2017

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • P. Nydahl
    • 1
  • A. Diers
    • 2
  • U. Günther
    • 2
  • B. Haastert
    • 3
  • S. Hesse
    • 4
  • C. Kerschensteiner
    • 5
  • S. Klarmann
    • 6
  • S. Köpke
    • 7
  1. 1.PflegeforschungUniversitätsklinikum Schleswig-Holstein, Campus KielKielDeutschland
  2. 2.Universitätsklinik für Anästhesiologie/Intensivmedizin/Notfallmedizin/SchmerztherapieKlinikum OldenburgOldenburgDeutschland
  3. 3.mediStatisticaNeuenradeDeutschland
  4. 4.Anästhesie und IntensivmedizinStädtisches Krankenhaus KielKielDeutschland
  5. 5.Klinik für Anästhesiologie und IntensivmedizinKlinikum NeumarktNeumarkt i.d.OPf.Deutschland
  6. 6.Physiotherapie und Physikalische TherapieUniversitätsklinikum Schleswig-Holstein, Campus KielKielDeutschland
  7. 7.Institut für Sozialmedizin und EpidemiologieUniversität zu LübeckLübeckDeutschland

Personalised recommendations