Kosten als Instrument zur Effizienzbeurteilung intensivmedizinischer Funktionseinheiten

  • T. Maierhofer
  • F. Pfisterer
  • A. Bender
  • H. Küchenhoff
  • O. Moerer
  • H. Burchardi
  • W. H. Hartl
Originalien

Zusammenfassung

Hintergrund

Das „Krankenhausstrukturgesetz“ sieht vor, die Landeskrankenhausplanung künftig an Qualitätskriterien zu orientieren. Dabei soll auch die Effektivität der medizinischen Versorgung mittels Kosten-Nutzen-Analysen (KNA) bewertet werden. KNA intensivmedizinischer Funktionseinheiten benötigen zur Objektivierung eine Normierung (Adjustierung) der Kosten an die Ausgangssituation. Die vorliegende Studie wollte untersuchen, inwieweit Behandlungskosten auf patientenspezifische Ausgangsvariablen (u. a. Art und Schweregrad der Grunderkrankung) bezogen werden können.

Methodik

Kosten wurden von 2000–2004 auf 14 Intensivstationen in 9 deutschen Universitätskliniken mittels einer sog. Bottom-up-Methode ermittelt und mit demographischen Variablen bzw. mit Informationen zur Art (International Classification of Diseases [ICD]-10-Codes) und dem Schweregrad (intensivmedizinische Scores) der Grunderkrankung bei Aufnahme auf die Intensivstation zusammengeführt. Verschiedene statistische Modelle wurden zur Beschreibung der Kostendeterminanten untersucht.

Ergebnisse

Ausgewertet wurden 3803 Intensivpatienten. Die gesamten Kosten für die Therapie pro Patient lagen im Median bei 3199 € (Interquartilsabstand [IQR] 1768–6659 €). Die Prognosegüte war bei allen Modellen unzureichend und der geschätzte mittlere absolute Prognosefehler lag mindestens bei 3860 € (relativer Fehler 66 %; Extreme-gradient-boosting-Modell).

Schlussfolgerung

Mit den gegenwärtig verfügbaren Instrumenten (patientenspezifische Ausgangsvariablen) ist eine Normierung der Kosten und damit eine objektive KNA intensivmedizinischer Funktionseinheiten nicht durchführbar. Faktoren, die zum Zeitpunkt der Aufnahme unbekannt sind, scheinen für einen Großteil der anfallenden Kosten verantwortlich zu sein.

Schlüsselwörter

Krankenhausstrukturgesetz Behandlungskosten Kosten-Nutzen-Analyse Intensivtherapie ICD-10 

Cost analysis as a tool for assessing the efficacy of intensive care units

Abstract

Background

The German “Hospital Structure Act” intends to align the state hospital planning on quality criteria. Within this process cost-utility analyses (CUAs) shall be used to assess the efficacy of medical care. To be objective, CUAs of intensive care units (ICUs) require standardization (adjustment) of costs. The present study analyzed the extent to which treatment costs are related to patient-specific baseline variables (such as type and severity of the primary disease).

Methods

From 2000–2004, a bottom-up procedure was used to quantify total costs on 14 ICUs in nine German university hospitals. Results were combined with demographic data, and data indicating type (ICD-10 codes) and severity (ICU scoring systems) of the primary disease at ICU admission. Various statistical models were tested to identify that which best described the associations between baseline variables and costs.

Results

In all, 3803 critically ill patients could be examined. The median of treatment costs per patient was 3199 € (IQR 1768–6659 €). No model allowed an acceptably precise adjustment of costs; the estimated mean absolute prognostic error was at least 3860 € (mean relative prognostic error 66%), when we tested an Extreme Gradient Boosting Model.

Conclusion

Instruments which are currently available (cost adjustment based on patient-specific baseline variables) do not allow a standardization of costs, and an objective CUA of ICUs. Factors unknown at baseline may cause a large portion of treatment costs.

Keywords

Hospital Structure Act Treatment costs Cost-utility analysis Intensive care units ICD-10 

Supplementary material

63_2017_315_MOESM1_ESM.pdf (629 kb)
Kosten als Instrument zur Effizienzbeurteilung intensivmedizinischer Funktionseinheiten

Literatur

  1. 1.
    Osterloh F (2015) Qualitätsmessung im Stationären Bereich: Die Erwartungen sind hoch. Dtsch Arztebl 112(20):A-901/B-757/C-733Google Scholar
  2. 2.
    Frutiger A, Moreno R, Thijs LG, Carlet J (1998) A clinician’s guide to the use of quality terminology. Intensive Care Med 24:860–863CrossRefPubMedGoogle Scholar
  3. 3.
    Gold M, Siegel J, Russel L, Weinstein M (Hrsg) (1996) Cost-effectiveness in health and medicine. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Graf J, Wagner J, Graf C, Koch KC, Janssens U (2005) Five-year survival, quality of life, and individual costs of 303 consecutive medical intensive care patients – a cost-utility analysis. Crit Care Med 33(3):547–555CrossRefPubMedGoogle Scholar
  5. 5.
    Statistisches Bundesamt (2016) Pressemitteilung vom 8. März 2016 – 080/16. https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2016/03/PD16_080_23611pdf.pdf?__blob=publicationFile. Zugegriffen: 28.2.2017Google Scholar
  6. 6.
    Martin E (1998) Sind Fortschritte in der Intensivmedizin noch finanzierbar? J Anästh Intensivbehandl 2:1–9Google Scholar
  7. 7.
    Milbrandt EB, Kersten A, Rahim MT, Dremsizov TT, Clermont G, Cooper LM, Angus DC, Linde-Zwirble WT (2008) Growth of intensive care unit resource use and its estimated cost in medicare. Crit Care Med 36:2504–2510CrossRefPubMedGoogle Scholar
  8. 8.
    Curtis JR, Engelberg RA, Bensink ME, Ramsey SD (2012) End-of-life care in the intensive care unit: can we simultaneously increase quality and reduce costs? Am J Respir Crit Care Med 186(7):587–592CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kramer AA, Zimmerman JE (2010) A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay. BMC Med Inform Decis Mak 10:27CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Reifferscheid A, Pomorin N, Wasem J (2015) Extent of rationing and overprovision in stationary care: results of a nationwide survey of German hospitals. Dtsch Med Wochenschr 140(13):e129–e135CrossRefPubMedGoogle Scholar
  11. 11.
    Bangert K, Borch J, Ferahli S, Braune SA, de Heer G, Kluge S (2016) Inadequate ICU-admissions: A 12-month prospective cohort study at a German University Hospital. Med Klin Intensivmed Notfmed 111(4):310–316CrossRefPubMedGoogle Scholar
  12. 12.
    Moerer O, Schmid A, Hofmann M, Herklotz A, Reinhart K, Werdan K, Schneider H, Burchardi H (2002) Direct costs of severe sepsis in three German intensive care units based on retrospective electronic patient record analysis of resource use. Intensive Care Med 28(10):1440–1446CrossRefPubMedGoogle Scholar
  13. 13.
    Neilson AR, Moerer O, Burchardi H, Schneider H (2004) A new concept for DRG-based reimbursement of services in German intensive care units: results of a pilot study. Intensive Care Med 30(6):1220–1223CrossRefPubMedGoogle Scholar
  14. 14.
    Moerer O, Plock E, Mgbor U, Schmid A, Schneider H, Wischnewsky MB, Burchardi H (2007) A German national prevalence study on the cost of intensive care: an evaluation from 51 intensive care units. Crit Care 11(3):R69CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). ACM, New York, S 785–794CrossRefGoogle Scholar
  16. 16.
    Graf J, Graf C, Koch KC, Hanrath P, Janssens U (2003) Cost analysis and outcome prediction with the Therapeutic Intervention Scoring System (TISS and TISS-28). Med Klin (Munich) 98(3):123–132CrossRefGoogle Scholar
  17. 17.
    Wunsch H, Gershengorn H, Scales DC (2012) Economics of ICU organization and management. Crit Care Clin 28(1):25–37CrossRefPubMedGoogle Scholar
  18. 18.
    Roberts RR, Frutos PW, Ciavarella GG, Gussow LM, Mensah EK, Kampe LM, Straus HE, Joseph G, Rydman RJ (1999) Distribution of variable vs fixed costs of hospital care. JAMA 281:644–649CrossRefPubMedGoogle Scholar
  19. 19.
    Moran JL, Solomon PJ (2012) ANZICS Centre for Outcome and Resource Evaluation (CORE) of the Australian and New Zealand Intensive Care Society (ANZICS). A review of statistical estimators for risk-adjusted length of stay: analysis of the Australian and new Zealand Intensive Care Adult Patient Data-Base, 2008–2009. BMC Med Res Methodol 12:68CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Verburg IW, Atashi A, Eslami S, Holman R, Abu-Hanna A, de Jonge E, Peek N, de Keizer NF (2017) Which models can I use to predict adult ICU length of stay? A systematic review. Crit Care Med 45(2):e222–e231CrossRefPubMedGoogle Scholar
  21. 21.
    Wilkinson DJ, Truog RD (2013) The luck of the draw: physician-related variability in end-of-life decision-making in intensive care. Intensive Care Med 39(6):1128–1132CrossRefPubMedGoogle Scholar
  22. 22.
    Curtis JR, Engelberg RA, Teno JM (2017) Understanding variability of end-of-life care in the ICU for the elderly. Intensive Care Med 43(1):94–96CrossRefPubMedGoogle Scholar
  23. 23.
    Talmor D, Shapiro N, Greenberg D, Stone PW, Neumann PJ (2006) When is critical care medicine cost-effective? A systematic review of the cost-effectiveness literature. Crit Care Med 34(11):2738–2747CrossRefPubMedGoogle Scholar
  24. 24.
    Graf J, Graf C, Janssens U (2002) Analysis of resource use and cost-generating factors in a German medical intensive care unit employing the Therapeutic Intervention Scoring System (TISS-28). Intensive Care Med 28(3):324–331CrossRefPubMedGoogle Scholar
  25. 25.
    Deutscher Ethikrat (German Ethics Council) (2011) Medical benefits and costs in health care: the normative role of their evaluation. Opinion. Deutscher Ethikrat, BerlinGoogle Scholar
  26. 26.
    Bagshaw SM, Webb SA, Delaney A et al (2009) Very old patients admitted to intensive care in Australia and New Zealand: a multi-centre cohort analysis. Crit Care 13(2):R45CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cavallazzi R, Marik PE, Hirani A, Pachinburavan M, Vasu TS, Leiby BE (2010) Association between time of admission to the ICU and mortality: a systematic review and metaanalysis. Chest 138(1):68–75CrossRefPubMedGoogle Scholar
  28. 28.
    Brunot V, Landreau L, Corne P, Platon L, Besnard N, Buzançais A, Daubin D, Serre JE, Molinari N, Klouche K (2016) Mortality Associated with Night and Weekend Admissions to ICU with On-Site Intensivist Coverage: Results of a Nine-Year Cohort Study (2006–2014). PLoS ONE 11(12):e0168548CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Muhm M, Walendowski M, Danko T, Weiss C, Ruffing T, Winkler H (2015) Factors influencing course of hospitalization in patients with hip fractures: complications, length of stay and hospital mortality. Z Gerontol Geriatr 48(4):339–345CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • T. Maierhofer
    • 1
  • F. Pfisterer
    • 1
  • A. Bender
    • 1
  • H. Küchenhoff
    • 1
  • O. Moerer
    • 3
  • H. Burchardi
    • 3
    • 4
  • W. H. Hartl
    • 2
  1. 1.Statistisches Beratungslabor, Institut für StatistikLMU MünchenMünchenDeutschland
  2. 2.Klinik für Allgemeine, Viszeral‑, Transplantations-, und GefäßchirurgieKlinikum der Universität MünchenMünchenDeutschland
  3. 3.Klinik für AnästhesiologieUniversitätsklinikum GöttingenGöttingenDeutschland
  4. 4.BovendenDeutschland

Personalised recommendations