Advertisement

Prävalenz und Schwere der Lungenarterienembolie in Abhängigkeit von klinischen und paraklinischen Parametern

Analyse von 1943 konsekutiven Patienten mit CT-Pulmonalisangiographie
  • P. Kocea
  • K. Mischke
  • H.-P. Volk
  • U. Eberle
  • J. R. OrtleppEmail author
Originalien

Zusammenfassung

Hintergrund

Die Lungenarterienembolie (LAE) hat eine heterogene Symptomatik. Altersadjustierte D‑Dimere und klinische Scores sollen helfen, die Diagnose zu stellen.

Methoden

Retrospektive Auswertung einer über fünf Kalenderjahre rekrutierten Kohorte von 1943 konsekutiven Patienten, welche bei positiven D‑Dimeren eine CT-Pulmonalisangiographie (CTPA) zum Nachweis einer LAE erhielten.

Ergebnisse

In der CTPA hatten n = 362 (19 %) eine Lungenarterienembolie. Die Prävalenz der LAE stieg stetig mit steigenden D‑Dimeren (Prävalenz LAE bei D‑Dimer Zehnerperzentilen: 3 %, 4 %, 7 %, 8 %, 8 %, 21 %, 20 %, 27 %, 37 %, 52 %; p < 0,001). D‑Dimere > 2,0 waren hochsignifikant assoziiert mit dem Vorliegen einer LAE (OR 7,17 95 % CI 5,27–9,76, p < 0,001). Thoraxbeschwerden und Tachypnoe zeigten keine Assoziation. Dyspnoe, Pleuritische Beschwerden und allgemeine Abgeschlagenheit zeigten signifikante Assoziationen mit einem Altersunterschied: Pleuritische Beschwerden waren bei jüngeren (< 76 Jahre) Patienten mit LAE häufiger als bei älteren (15 % vs. 3 %; p < 0,001) und hochsignifikant mit der LAE assoziiert (OR 4,99 95 % KI 2,83–8,81; p < 0,001). Allgemeine Abgeschlagenheit zeigte sich mehr bei älteren (> 76 Jahre) als bei jüngeren Patienten (44 % vs. 24 %; p < 0,001). LAE-Patienten mit D‑Dimeren > 6,0 mg/l waren hämodynamisch stärker kompromittiert als Patienten mit D‑Dimeren < 6,0 mg/l: Tachykardie 32 % vs. 20 %, p = 0,015; Rechtsherzbelastungszeichen im Echo: 38 % vs. 23 %, p = 0,003; Rechtsherzbelastungszeichen im EKG: 27 % vs. 13 %; p = 0,001; Reanimation 4 % vs. 0 %, p = 0,003; Lysenotwendigkeit 6 % vs. 1 %, p = 0,014.

Schlussfolgerung

Die Symptomatik von Patienten mit Lungenarterienembolie ist häufig vage, insbesondere bei älteren Patienten findet sich häufig allgemeine Abgeschlagenheit. Die absolute Höhe der D‑Dimere, insbesondere D‑Dimere > 2,0 mg/l, ist ein starker Prädiktor für das Vorliegen einer Lungenarterienembolie. D‑Dimere > 6,0 mg/l sind assoziiert mit stärkerer hämodynamischer Kompromittierung bei Patienten mit LAE.

Schlüsselwörter

Lungenarterienembolie D-Dimere Symptomatik Wells-Score Geneva-Score 

Prevalence and severity of pulmonary embolism are dependent on clinical and paraclinical parameters

Analysis of 1,943 consecutive patients with CT pulmonary angiography

Abstract

Background

Patients with pulmonary embolism (PE) have heterogeneous symptoms. Clinical scores and age-adjusted D‑dimer should help clinicians to establish the correct diagnosis.

Methods

A cohort of 1,943 consecutive patients with positive D‑dimer levels who were referred for CT pulmonary angiography (CTPA) over a period of 5 years to rule PE in or out were retrospectively analyzed.

Results

On CTPA n = 362 (19 %) had PE. The prevalence of PE increased stepwise with increasing D‑dimer levels (prevalence of PE with 10 percentiles of D‑dimers was: 3 %, 4 %, 7 %, 8 %, 8 %, 21 %, 20 %, 27 %, 37 %, 52 %; p < 0.001). D‑dimers > 2.0 were significantly associated with PE (OR 7.17 95 % CI 5.27–9.76, p < 0.001). Chest discomfort and tachypnea showed no association with PE. Dyspnoea, pleuritic pain, and general fatigue showed significant associations with age: pleuritic chest pain was more frequent in patients aged < 76 years than in patients aged > 76 years (15 % vs 3 %; p < 0.001) and was highly significantly associated with PE (OR 4.99 95 % CI 2.83–8.81; p < 0.001). General fatigue was more prevalent in patients aged > 76 years (44 % vs 24 %; p < 0.001). PE patients with D‑dimers > 6.0 mg/l were hemodynamically more compromised than patients with D‑dimers < 6.0 mg/l: tachycardia 32 % vs 20 %, p = 0.015; right ventricular strain on echocardiography: 38 % vs 23 %, p = 0.003; right ventricular strain on ECG: 27 % vs 13 %; p  = 0.001; resuscitation 4 % vs 0 %, p = 0.003; lytic therapy 6 % vs 1 %, p = 0.014.

Conclusion

The symptoms of PE patients are often vague. Particularly in older patients, fatigue may be the only symptom. The absolute level of D‑dimers, particularly > 2.0 mg/l, is a strong predictor of PE. A D‑dimer level > 6.0 mg/l is associated with more severe hemodynamic impairment in patients with PE.

Keywords

Pulmonary embolism D-dimer Symptoms Wells Score Geneva Score 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

P. Kocea, K. Mischke, H.-P. Volk, U. Eberle und J.R. Ortlepp geben an, dass kein Interessenkonflikt besteht.

Die Studie wurde durch die lokale Ethikkommission genehmigt. Es handelt sich um eine retrospektiv anonymisiert ausgewertete Studie nach Krankenakten. Ein Versuch an Menschen fand nicht statt. Die Deklaration von Helsinki wurde eingehalten.

Supplementary material

63_2016_144_MOESM1_ESM.pdf (205 kb)
Tabelle 2 (ausführliche Version mit allen Parametern) Univariate Assoziation einzelner Angaben, Symptome oder Befunde mit dem Nachweis eine LAE in der CT-Pulmonalisangiographie aller Patienten

Literatur

  1. 1.
    Anderson FA Jr, Spencer FA (2003) Risk factors for venous thromboembolism. Circulation 107:16–19CrossRefGoogle Scholar
  2. 2.
    Augart J (2011) Inzidenz und Altersverteilung der Lungenembolie in Deutschland auf Basis der DRG-Statistik, Inauguraldissertation zur Erlangung des Doktorgrades der Medizin durch die Medizinische Fakultät Universität Duisburg-Essen. http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-29484/Diss_Augart.pdf. Zugegriffen: 26 August 2015Google Scholar
  3. 3.
    Barais M, Morio N, Cuzon Breton A et al (2014) “I can’t find anything wrong: it must be a pulmonary embolism”: diagnosing suspected pulmonary embolism in primary care, a qualitative study. PLOS ONE 9(5):e98112CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bauer RW, Frellesen C, Renker M et al (2011) Dual energy CT pulmonary blood volume assessment in acute pulmonary embolism – correlation with D‑dimer level, right heart strain and clinical outcome. Eur Radiol 21(9):1914–1921CrossRefPubMedGoogle Scholar
  5. 5.
    van Belle A, Büller HR, Huisman MV et al (2006) Effectiveness of managing suspected pulmonary embolism using an algorithm combining clinical probability, D‑dimer testing, and computed tomography. JAMA 295(2):172–179CrossRefPubMedGoogle Scholar
  6. 6.
    Ceriani E, Combescure C, Le Gal G et al (2010) Clinical prediction rules for pulmonary embolism: a systematic review and meta-analysis. J Thromb Haemost 8(5):957–970PubMedGoogle Scholar
  7. 7.
    Chopra V, Anand S, Hickner A et al (2013) Risk of venous thromboembolism associated with peripherally inserted central catheters: a systematic review and meta-analysis. Lancet 382(9889):311–325CrossRefPubMedGoogle Scholar
  8. 8.
    Cohen AT, Agnelli G, Anderson FA (2007) Venous thromboembolism (VTE) in Europe. The number of VTE events and associated morbidity and mortality. Thromb Haemost 98:756–764PubMedGoogle Scholar
  9. 9.
    Coskun F, Yilmaz D, Ursavas A et al (2010) Relationship between disease severity and D‑dimer levels measured with two different methods in pulmonary embolism patients. Multidiscip Respir Med 5(3):168–172CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Douketis J, Tosetto A, Marcucci M et al (2010) Patient-level meta-analysis: effect of measurement timing, threshold, and patient age on ability of D‑dimer testing to assess recurrence risk after unprovoked venous thromboembolism. Ann Intern Med 153(8):523–531CrossRefPubMedGoogle Scholar
  11. 11.
    Geerts WH, Code KI, Jay RM et al (1994) A prospective study of venous thromboembolism after major trauma. N Engl J Med 331(24):1601–1606CrossRefPubMedGoogle Scholar
  12. 12.
    Goldhaber SZ (2002) Echocardiography in the management of pulmonary embolism. Ann Intern Med 136:691–700CrossRefPubMedGoogle Scholar
  13. 13.
    Goldhaber SZ, Elliott CG (2003) Acute pulmonary embolism: part I: epidemiology, pathophysiology, and diagnosis. Circulation 108:2726–2729CrossRefPubMedGoogle Scholar
  14. 14.
    Goldhaber SZ, Grodstein F, Stampfer MJ et al (1997) A prospective study of risk factors for pulmonary embolism in women. JAMA 277(8):642–645CrossRefPubMedGoogle Scholar
  15. 15.
    Grosser KD (1988) Akute Lungenembolie. Behandlung nach Schweregraden. Dtsch Arztebl 85:587–594Google Scholar
  16. 16.
    Hassen GW, Singh MM, Kalantari H et al (2012) Persistent hiccups as a rare presenting symptom of pulmonary embolism. West J Emerg Med 13(6):479–483CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Heit JA, Kobbervig CE, James AH et al (2005) Trends in the incidence of venous thromboembolism during pregnancy or postpartum: a 30-year population-based study. Ann Intern Med 143(10):697–706CrossRefPubMedGoogle Scholar
  18. 18.
    Hoffmann R (2013) Sinnvolle Diagnostik in der Notaufnahme. Echokardiographie. Med Klin Intensivmed Notfmed 108(3):209–213CrossRefPubMedGoogle Scholar
  19. 19.
    Hogg K, Thomas D, Mackway-Jones K et al (2011) Diagnosing pulmonary embolism: a comparison of clinical probability scores. Br J Haematol 153(2):253–258CrossRefPubMedGoogle Scholar
  20. 20.
    Ji Y, Sun B, Juggessur-Mungur KS, Li Z et al (2014) Correlation of D‑dimer level with the radiological severity indexes of pulmonary embolism on computed tomography pulmonary angiography. Chin Med J 127(11):2025–2029PubMedGoogle Scholar
  21. 21.
    Konstantinides S, Geibel A, Olschewski M et al (2002) Importance of cardiac troponins I and T in risk stratification of patients with acute pulmonary embolism. Circulation 106(10):1263–1268CrossRefPubMedGoogle Scholar
  22. 22.
    Konstantinides S, Torbicki A, Agnelli G et al (2014) 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 35(43):3033–3069CrossRefPubMedGoogle Scholar
  23. 23.
    Kröger K, Küpper-Nybelen J, Moerchel C et al (2012) Prevalence and economic burden of pulmonary embolism in Germany. Vasc Med 17(5):303–309CrossRefPubMedGoogle Scholar
  24. 24.
    Le Gal G, Righini M, Roy PM et al (2006) Prediction of pulmonary embolism in the emergency department: the revised Geneva score. Ann Intern Med 144(3):165–171CrossRefPubMedGoogle Scholar
  25. 25.
    Meyer G, Vicaut E, Danays T et al (2014) Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med 370(15):1402–1411CrossRefPubMedGoogle Scholar
  26. 26.
    Naess IA, Christiansen SC, Romundstad P et al (2007) Incidence and mortality of venous thrombosis: a population-based study. J Thromb Haemost 5:692–699CrossRefPubMedGoogle Scholar
  27. 27.
    Palm F, Urbanek C, Rose S et al (2010) Stroke incidence and survival in Ludwigshafen am Rhein, Germany: the Ludwigshafen Stroke Study (LuSSt). Stroke 41(9):1865–1870CrossRefPubMedGoogle Scholar
  28. 28.
    Passman MA, Moneta GL, Taylor LM Jr et al (1997) Pulmonary embolism is associated with the combination of isolated calf vein thrombosis and respiratory symptoms. J Vasc Surg 25(1):39–45CrossRefPubMedGoogle Scholar
  29. 29.
    Piazza G, Goldhaber SZ (2006) Acute pulmonary embolism: part I: epidemiology and diagnosis. Circulation 114(2):28–32CrossRefGoogle Scholar
  30. 30.
    Pollack CV, Schreiber D, Goldhaber SZ et al (2011) Clinical characteristics, management, and outcomes of patients diagnosed with acute pulmonary embolism in the emergency department: initial report of EMPEROR (Multicenter Emergency Medicine Pulmonary Embolism in the Real World Registry). J Am Coll Cardiol 57(6):700–706CrossRefPubMedGoogle Scholar
  31. 31.
    Quiroz R, Kucher N, Zou KH et al (2005) Clinical validity of a negative computed tomography scan in patients with suspected pulmonary embolism: a systematic review. JAMA 293(16):2012–2017CrossRefPubMedGoogle Scholar
  32. 32.
    Ramos A, Murillas J, Mascías C et al (2000) Influence of age on clinical presentation of acute pulmonary embolism. Arch Gerontol Geriatr 30(3):189–198CrossRefPubMedGoogle Scholar
  33. 33.
    Righini M, Van Es J, Den Exter PL et al (2014) Age-adjusted D‑dimer cutoff levels to rule out pulmonary embolism: the ADJUST-PE study. JAMA 311(11):1117–1124CrossRefPubMedGoogle Scholar
  34. 34.
    Rodger M, Makropoulos D, Turek M et al (2000) Diagnostic value of the electrocardiogram in suspected pulmonary embolism. Am J Cardiol 86(7):807–809 (A10)CrossRefPubMedGoogle Scholar
  35. 35.
    Sanders S, Doust J, Glasziou P (2015) A systematic review of studies comparing diagnostic clinical prediction rules with clinical judgment. PLOS ONE 10(6):e0128233–2015. doi:10.1371/journal.pone.0128233.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Shih WJ, Pulmano C (1996) Massive pulmonary embolism without symptoms demonstrated by radionuclide imaging with thromboemboli in both main pulmonary arteries. Clin Nucl Med 21(6):465–468CrossRefPubMedGoogle Scholar
  37. 37.
    Silverstein M, Heit J, Mohr D et al (1998) Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med 158:585–593CrossRefPubMedGoogle Scholar
  38. 38.
    Stein PD, Hull RD, Patel KC et al (2004) D‑dimer for the exclusion of acute venous thrombosis and pulmonary embolism: a systematic review. Ann Intern Med 140(8):589–602CrossRefPubMedGoogle Scholar
  39. 39.
    Stein PD, Terrin ML, Hales CA et al (1991) Clinical, laboratory, roentgenographic, and electrocardiographic findings in patients with acute pulmonary embolism and no pre-existing cardiac or pulmonary disease. Chest 100(3):598–603CrossRefPubMedGoogle Scholar
  40. 40.
    Stein PD, Willis PW 3rd, DeMets DL (1981) History and physical examination in acute pulmonary embolism in patients without preexisting cardiac or pulmonary disease. Am J Cardiol 47(2):218–223CrossRefPubMedGoogle Scholar
  41. 41.
    Theilade J, Winkel BG, Holst AG et al (2010) A nationwide, retrospective analysis of symptoms, comorbidities, medical care and autopsy findings in cases of fatal pulmonary embolism in younger patients. J Thromb Haemost 8(8):1723–1729CrossRefPubMedGoogle Scholar
  42. 42.
    Thomas L, Reichl M (1991) Pulmonary embolism in patients attending the accident and emergency department with pleuritic chest pain. Arch Emerg Med 8(1):48–51CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tick LW, Nijkeuter M, Kramer MH et al (2008) High D‑dimer levels increase the likelihood of pulmonary embolism. J Intern Med 264(2):195–200CrossRefPubMedGoogle Scholar
  44. 44.
    Timmons S, Kingston M, Hussain M et al (2003) Pulmonary embolism: differences in presentation between older and younger patients. Age Ageing 32(6):601–605CrossRefPubMedGoogle Scholar
  45. 45.
    Verma N, Willeke P, Biscsan P et al (2014) Altersadjustierte D‑Dimer-Grenzwerte in der Diagnostik thrombembolischer Ereignisse. Validierung in der Notaufnahme. Med Klin Intensivmed Notfmed 109(2):121–128CrossRefPubMedGoogle Scholar
  46. 46.
    Webb WB, Jones AE, Kline JA (2005) Comparison of the unstructured clinician estimate of pretest probability for pulmonary embolism to the Canadian score and the Charlotte rule: a prospective observational study. Acad Emerg Med 12(7):587–593CrossRefPubMedGoogle Scholar
  47. 47.
    Wells PS, Anderson DR, Rodger M et al (2000) Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED D‑dimer. Thromb Haemost 83:416–420PubMedGoogle Scholar
  48. 48.
    Wells PS, Anderson DR, Rodger M et al (2001) Excluding pulmonary embolism at the bedside without diagnostic imaging: management of patients with suspected pulmonary embolism presenting to the emergency department by using a simple clinical model and d‑dimer. Ann Intern Med 135(2):98–107CrossRefPubMedGoogle Scholar
  49. 49.
    Zöller B, Li X, Sundquist J et al (2012) ) Risk of pulmonary embolism in patients with autoimmune disorders: a nationwide follow-up study from Sweden. Lancet 379(9812):244–249CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • P. Kocea
    • 1
    • 2
  • K. Mischke
    • 2
  • H.-P. Volk
    • 1
  • U. Eberle
    • 1
  • J. R. Ortlepp
    • 1
    • 2
    Email author
  1. 1.Klinik für Innere Medizin und IntensivmedizinAsklepios Kliniken SchildautalSeesenDeutschland
  2. 2.Medizinische Klinik IUniversitätsklinikum Aachen, RWTH AachenAachenDeutschland

Personalised recommendations