Advertisement

Hyperkapnisches Atemversagen

Pathophysiologie, Beatmungsindikationen und -durchführung
  • U. Kreppein
  • P. Litterst
  • M. WesthoffEmail author
Leitthema

Zusammenfassung

Hintergrund

Das akute hyperkapnische Atemversagen betrifft im klinischen Alltag im Wesentlichen Patienten mit chronisch-obstruktiver Lungenerkrankung (COPD) und Obesitas-Hypoventilationssyndrom (OHS). Es kann je nach Auslöser auch mit einem hypoxämischen Atemversagen assoziiert sein und stellt besondere Anforderungen an die Beatmungstherapie.

Ziel

Vermittlung des aktuellen Kenntnisstands zur Beatmungsindikation und -durchführung bei hyperkapnischem Atemversagen.

Material und Methoden

Review der Literatur.

Ergebnisse

Die führende Komponente des Atemversagens ist wichtig bei der Wahl des Beatmungsverfahrens. Bei hyperkapnischem Atemversagen mit einem pH < 7,35 hat sich bewährt, primär die nichtinvasive Beatmung (NIV) einzusetzen, wobei Kontraindikationen zu beachten sind. Ihr Einsatz bedarf insbesondere bei schwerer respiratorischer Azidose eines geschulten und erfahrenen Beatmungsteams und eines engmaschigen Monitorings, um frühzeitig ein NIV-Versagen zu erkennen. Die Beatmungseinstellung bei COPD-Exazerbation muss darauf abzielen, eine weitere Überblähung und Zunahme des intrinsischen PEEP zu vermeiden. Deshalb sind lange Exspirations- und kurze Inspirationszeiten zu wählen. Bei Patienten mit OHS oder Overlap-Syndrom ist eine Anpassung der Beatmung an die jeweilige Pathophysiologie erforderlich. Bei schwersten und beatmungstechnisch nicht beherrschbaren Hyperkapnien und respiratorischen Azidosen sind extrakorporale Verfahren eine Option, auch Berichte über den Einsatz bei wachen Patienten liegen vor.

Schlussfolgerung

Die NIV ist das führende Beatmungsverfahren bei hyperkapnischem Atemversagen, bedarf aber engmaschiger Kontrollen, damit der Zeitpunkt für eine invasive Beatmung nicht verpasst wird. Der Stellenwert extrakorporaler Verfahren zur CO2-Elimination ist noch unklar.

Schlüsselwörter

Nichtinvasive Beatmung Mechanische Beatmung Chronisch-obstruktive Lungenerkrankung Obesitas-Hypoventilationssyndrom Respiratorische Azidose 

Hypercapnic respiratory failure

Pathophysiology, indications for mechanical ventilation and management

Abstract

Background

Acute hypercapnic respiratory failure is mostly seen in patients with chronic obstructive pulmonary disease (COPD) and obesity hypoventilation syndrome (OHS). Depending on the underlying cause it may be associated with hypoxemic respiratory failure and places high demands on mechanical ventilation.

Objective

Presentation of the current knowledge on indications and management of mechanical ventilation in patients with hypercapnic respiratory failure.

Material and methods

Review of the literature.

Results

Important by the selection of mechanical ventilation procedures is recognition of the predominant pathophysiological component. In hypercapnic respiratory failure with a pH < 7.35 non-invasive ventilation (NIV) is primarily indicated unless there are contraindications. In patients with severe respiratory acidosis NIV requires a skilled and experienced team and close monitoring in order to perceive a failure of NIV. In acute exacerbation of COPD ventilator settings need a long expiration and short inspiration time to avoid further hyperinflation and an increase in intrinsic positive end-expiratory pressure (PEEP). Ventilation must be adapted to the pathophysiological situation in patients with OHS or overlap syndrome. If severe respiratory acidosis and hypercapnia cannot be managed by mechanical ventilation therapy alone extracorporeal venous CO2 removal may be necessary. Reports on this approach in awake patients are available.

Conclusion

The use of NIV is the predominant treatment in patients with hypercapnic respiratory failure but close monitoring is necessary in order not to miss the indications for intubation and invasive ventilation. Methods of extracorporeal CO2 removal especially in awake patients need further evaluation.

Keywords

Noninvasive ventilation Mechanical ventilation Pulmonary disease, chronic obstructive Obesity hypoventilation syndrome Acidosis, respiratory 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

U. Kreppein und P. Litterst geben an, dass kein Interessenkonflikt besteht. M. Westhoff hat Vortragshonorare von den Firmen VitalAire und Heinen + Löwenstein erhalten.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Palmer LB (2009) Ventilator-associated infection. Curr Opin Pulm Med 15:230–235CrossRefPubMedGoogle Scholar
  2. 2.
    Antonelli M, Conti G, Rocco M et al (1998) A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med 339:429–435CrossRefPubMedGoogle Scholar
  3. 3.
    Plant PK, Owen JL, Elliott MW (2000) Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomised controlled trial. Lancet 355:1931–1935CrossRefPubMedGoogle Scholar
  4. 4.
    Vassilakopoulos T, Zakynthinos S, Roussos Ch (1996) Respiratory muscles and weaning failure. Eur Respir J 9:2383–2400CrossRefPubMedGoogle Scholar
  5. 5.
    Purro A, Appendini L, De Gaetano A et al (2000) Physiologic determinants of ventilator dependence in long-term mechanically ventilated patients. Am J Respir Crit Care Med 161:1115–1123CrossRefPubMedGoogle Scholar
  6. 6.
    Westhoff M, Schönhofer B, Neumann P et al (2015) Nicht-invasive Beatmung als Therapie der akuten respiratorischen Insuffizienz. S3-Leitlinie herausgegeben von der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin e. V. Pneumologie 69:719–756CrossRefPubMedGoogle Scholar
  7. 7.
    Chu CM, Chan VL, Lin AW et al (2004) Readmission rates and life threatening events in COPD survivors treated with non-invasive ventilation for acute hypercapnic respiratory failure. Thorax 59:1020–1025CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Peter JV, Moran JL, Phillips-Hughes J et al (2002) Noninvasive ventilation in acute respiratory failure—a meta-analysis update. Crit Care Med 30:555–562CrossRefPubMedGoogle Scholar
  9. 9.
    Ram FS, Lightowler JV, Wedzicha JA (2003) Non-invasive positive pressure ventilation for treatment of respiratory failure due to exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev (1):CD004104Google Scholar
  10. 10.
    Keenan SP, Sinuff T, Cook DJ et al (2003) Which patients with acute exacerbation of chronic obstructive pulmonary disease benefit from noninvasive positive-pressure ventilation? A systematic review of the literature. Ann Intern Med 138:861–870CrossRefPubMedGoogle Scholar
  11. 11.
    Keenan SP, Mehta S (2009) Noninvasive ventilation for patients presenting with acute respiratory failure: the randomized controlled trials. Respir Care 54:116–126PubMedGoogle Scholar
  12. 12.
    Thille AW, Cabello B, Galia F et al (2008) Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med 34:1477–1486CrossRefPubMedGoogle Scholar
  13. 13.
    Conti G, Antonelli M, Navalesi P et al (2002) Noninvasive vs. conventional mechanical ventilation in patiens with chronic obstructive pulmonary disease after failure of medical treatment in the ward: a randomized trial. Intensive Care Med 28:1701–1707CrossRefPubMedGoogle Scholar
  14. 14.
    Squadrone E, Frigerio P, Fogliati C et al (2004) Noninvasive vs. invasive ventilation in COPD patients with severe respiratory failure deemed to require ventilatory assistance. Intensive Care Med 30:1303–1310CrossRefPubMedGoogle Scholar
  15. 15.
    Díaz GG, Alcaraz AC, Talavera JC et al (2005) Noninvasive positive-pressure ventilation to treat hypercapnic coma secondary to respiratory failure. Chest 127:952–960CrossRefPubMedGoogle Scholar
  16. 16.
    Scala R, Naldi M, Archinucci I et al (2005) Noninvasive positive pressure ventilation in patients with acute exacerbations of COPD and varying levels of consciousness. Chest 128:1657–1666CrossRefPubMedGoogle Scholar
  17. 17.
    Conti G, Antonelli M, Navalesi P et al (2002) Noninvasive vs. conventional mechanical ventilation in patients with chronic obstructive pulmonary disease after failure of medical treatment in the ward: a randomized trial. Intensive Care Med 28:1701–1707CrossRefPubMedGoogle Scholar
  18. 18.
    Meduri GU, Conoscenti CC, Menashe PP et al (1989) Noninvasive face mask ventilation in patients with acute respiratory failure. Chest 95:865–870CrossRefPubMedGoogle Scholar
  19. 19.
    Gupta D et al (2010) A prospective randomized controlled trial on the efficacy of noninvasive ventilation in severe acute asthma. Respir Care 55:536–543PubMedGoogle Scholar
  20. 20.
    Carson KV, Usmani ZA, Smith BJ (2014) Noninvasive ventilation in acute severe asthma: current evidence and future perspectives. Curr Opin Pulm Med 20:118–123CrossRefPubMedGoogle Scholar
  21. 21.
    Lim WJ, Mohammed Akram R et al (2012) Non-invasive positive pressure ventilation for treatment of respiratory failure due to severe acute exacerbations of asthma. Cochrane Database Syst Rev 12:CD004360PubMedGoogle Scholar
  22. 22.
    Carrillo A, Ferrer M, Gonzalez-Diaz G et al (2012) Noninvasive ventilation in acute hypercapnic respiratory failure caused by obesity hypoventilation syndrome and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 186:1279–1285CrossRefPubMedGoogle Scholar
  23. 23.
    Flandreau G, Bourdin G, Leray V et al (2011) Management and long-term outcome of patients with chronic neuromuscular disease admitted to the intensive care unit for acute respiratory failure: a single-center retrospective study. Respir Care 56:953–960CrossRefPubMedGoogle Scholar
  24. 24.
    British Thoracic Society Standards of Care Committee (2002) Non-invasive ventilation in acute respiratory failure. Thorax 57:192–211CrossRefGoogle Scholar
  25. 25.
    Aso H, Kondoh Y, Taniguchi H et al (2010) Noninvasive ventilation in patients with acute exacerbation of pulmonary tuberculosis sequelae. Intern Med 49:2077–2083CrossRefPubMedGoogle Scholar
  26. 26.
    Seneviratne J, Mandrekar J, Wijdicks E et al (2008) Noninvasive ventilation in myasthenic crisis. Arch Neurol 65:54–58PubMedGoogle Scholar
  27. 27.
    Ambrosino N, Folgio K, Rubini F et al (1995) Non-invasive mechanical ventilation in acute respiratory failure due to chronic obstructive pulmonary disease: correlates for success. Thorax 50:755–757CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Plant PK, Owen JL, Elliott MW (2001) Non-invasive ventilation in acute exacerbations of chronic obstructive pulmonary disease: long term survival and predictors of in-hospital outcome. Thorax 56:708–712CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Carratu P, Bonfitto P, Dragonieri S et al (2005) Early and late failure of noninvasive ventilation in chronic obstructive pulmonary disease with acute exacerbation. Eur J Clin Invest 35:404–409CrossRefPubMedGoogle Scholar
  30. 30.
    Ferrer M, Ioanas M, Arancibia F et al (2005) Microbial airway colonization is associated with noninvasive ventilation failure in exacerbation of chronic obstructive pulmonary disease. Crit Care Med 33:2003–2009CrossRefPubMedGoogle Scholar
  31. 31.
    Moretti M, Cilione C, Tampieri A et al (2000) Incidence and causes on non-invasive mechanical ventilation failure after initial success. Thorax 55:819–825CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kregenow DA, Rubenfeld GD, Hudson LD et al (2006) Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med 34:1–7CrossRefPubMedGoogle Scholar
  33. 33.
    Stein M, Joannidis M (2012) Beatmungsstrategien bei chronisch obstruktiver Lungenerkrankung. Med Klin Intensivmed Notfmed 107:613–621CrossRefPubMedGoogle Scholar
  34. 34.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  35. 35.
    Petrucci N, De Feo C (2013). Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev 2:CD003844PubMedGoogle Scholar
  36. 36.
    Ward NS, Dushay KM (2008) Clinical concise review: mechanical ventilation of patients with chronic obstructive pulmonary disease. Crit Care Med 36:1614–1619CrossRefPubMedGoogle Scholar
  37. 37.
    Dhand R (2005) Ventilator graphics and respiratory mechanics in the patient with obstructive lung disease. Respir Care 50:246–261PubMedGoogle Scholar
  38. 38.
    Bonmarchand G, Chevron V, Chopin C et al (1996) Increased initial flow rate reduces inspiratory work of breathing during pressure support ventilation in patients with exacerbation of chronic obstructive pulmonary disease. Intensive Care Med 22:1147–1154CrossRefPubMedGoogle Scholar
  39. 39.
    Parthasarathy S, Jubran A, Tobin MJ (1998) Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med 158:1471–1478CrossRefPubMedGoogle Scholar
  40. 40.
    Jolliet P, Tassaux D (2006) Clinical review: patient-ventilator interaction in chronic obstructive pulmonary disease. Crit Care 10:236CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nava S, Pisani L (2014) Neurally adjusted non-invasive ventilation in patients with chronic obstructive pulmonary disease: does patient-ventilator synchrony matter? Crit Care 18:670CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gattinoni L, Pelosi P, Suter PM et al (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158:3–11CrossRefPubMedGoogle Scholar
  43. 43.
    Pelosi P, Ravagnan I, Giurati G et al (1999) Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology 91:1221–1231CrossRefPubMedGoogle Scholar
  44. 44.
    Pelosi P, Croci M, Ravagnan I et al (1996) Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest 109:144–151CrossRefPubMedGoogle Scholar
  45. 45.
    Fanelli V, Costamagna A, Ranieri VM (2014) Extracorporeal support for severe acute respiratory failure. Semin Respir Crit Care Med 35:519–527CrossRefPubMedGoogle Scholar
  46. 46.
    Combes A, Brodie D, Bartlett R et al; International ECMO Network (ECMONet) (2014) Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med 190:488–496CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Abteilung für Pneumologie, Schlaf- und BeatmungsmedizinLungenklinik HemerHemerDeutschland
  2. 2.Universität Witten/HerdeckeWittenDeutschland

Personalised recommendations