Medizinische Klinik

, Volume 105, Issue 9, pp 611–618 | Cite as

Bedeutung der Surfactant-Proteine B und D in der Differentialdiagnostik der akuten Dyspnoe

  • Claus Lüers
  • Gerrit Hagenah
  • Rolf Wachter
  • Sibylle Kleta
  • Jens Schaumberg
  • Sebastian Riedel
  • Lutz Binder
  • Klaus Jung
  • Albrecht Schmidt
  • Burkert Pieske
ORIGINALARBEIT

Zusammenfassung

Hintergrund und Ziel:

Grundlage für eine optimale Therapie kardiopulmonaler Erkrankungen ist die frühzeitige Diagnosestellung. Dies beinhaltet die differentialdiagnostische Beurteilung der akuten Dyspnoe. In zahlreichen Studien wurden die natriuretischen Peptide als zusätzliche, aussagekräftige Parameter für die Beurteilung der linksventrikulären Funktion beschrieben. In neueren Studien finden die lungenepithelspezifischen Surfactant-Proteine B (SP-B) und D (SP-D) als diagnostische Parameter Eingang in die weitere Abklärung einer Dyspnoe. Ziel dieser Untersuchung war es, die differentialdiagnostische Wertigkeit von NT-proBNP (N-terminales Spaltprodukt des „brain natriuretic peptide“) und Surfactant-Proteinen bei Patienten mit akuter Dyspnoe zu vergleichen.

Patienten und Methodik:

NT-proBNP, SP-B und SP-D wurden bei 81 Patienten mit akuter Dyspnoe in der Notaufnahme bestimmt und mit klinischen und echokardiographischen Parametern im Rahmen der endgültigen Diagnosestellung korreliert. Hierzu wurden die Patienten nach klinischen und echokardiographischen Parametern in verschiedene Untergruppen entsprechend der Ursache der akuten Dyspnoe eingeteilt.

Ergebnisse:

Patienten mit kardial bedingter akuter Dyspnoe hatten gegenüber Patienten mit nichtkardiopulmonaler Ursache einen signifikant erhöhten NT-proBNP-Spiegel (p = 0,04). Das SP-D zeigte bei Patienten mit kardialer Ursache einer akuten Dyspnoe die signifikant höchsten Plasmaspiegel, ist aber nach Durchführung der Regressionsanalysen von geringerer Bedeutung für die Differentialdiagnose der akuten Dyspnoe als das NT-proBNP. Die SP-B-Plasmaspiegel waren in den einzelnen Untergruppen nicht signifikant verschieden.

Schlussfolgerung:

Das NT-proBNP ist für die Differentialdiagnose der akuten Dyspnoe von Bedeutung. Auch wenn das SP-D ähnliche Plasmaspiegelveränderungen wie das NT-proBNP für die einzelnen Subgruppen aufweist, scheint es insgesamt von geringerer Bedeutung für die Differentialdiagnose zu sein. Das SP-B scheint für die Diagnosestellung einer kardialen oder pulmonalen Ursache bei akuter Dyspnoe ohne Bedeutung zu sein.

Schlüsselwörter:

Surfactant-Protein B Surfactant-Protein D NT-proBNP Dyspnoe Herzinsuffizienz 

Importance of Surfactant Proteins B and D for the Differential Diagnosis of Acute Dyspnea

Abstract

Background and Purpose:

The basis for an optimal therapy of cardiopulmonary diseases is the assessment of an early diagnosis. This implies an evaluation of possible differential diagnoses of acute dyspnea. In numerous studies, natriuretic peptides were characterized as additional, meaningful parameters for the assessment of left ventricular function. Current studies could demonstrate that surfactant proteins B (SP-B) and D (SP-D) are of importance for the differentiation of patients with acute dyspnea. The aim of this study was to compare the values of NT-proBNP (N-terminal brain natriuretic peptide) and surfactant proteins for the assessment of a final diagnosis in patients with acute dyspnea.

Patients and Methods:

NT-proBNP, SP-B and SP-D were measured in 81 patients with acute dyspnea in the emergency room and were correlated with clinical and echocardiographic parameters with respect to the final diagnosis. For this, patients were classified with respect to clinical and echocardiographic parameters in different subgroups concerning the final diagnosis of acute dyspnea.

Results:

In patients with a cardiac origin of acute dyspnea, plasma levels of NT-proBNP were significantly higher as compared to patients with a noncardiac diagnosis (p = 0.04). SP-D was highest in patients with a cardiac origin of acute dyspnea, but after performing regression analysis it seems to be of less importance for the differential diagnosis of acute dyspnea as compared to NT-proBNP. SP-B plasma levels were not different between the four subgroups.

Conclusion:

NT-proBNP is of importance for the differential diagnosis of acute dyspnea. Although SP-D shows similar changes of plasma levels between the four subgroups, it seems to be of less importance for the differential diagnosis of acute dysnea. SP-B occurs to be of no relevance for the differentiation between cardiac and noncardiac origin of acute dyspnea.

Key Words:

Surfactant protein B Surfactant protein D NT-proBNP Dyspnea Heart failure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Koschack J, Scherer M, Luers C, et al. Natriuretic peptide vs. clinical information for diagnosis of left ventricular systolic dysfunction in primary care. BMC Fam Pract 2008;9:14.CrossRefPubMedGoogle Scholar
  2. 2.
    Ammar KA, Jacobsen SJ, Mahoney DW, et al. Prevalence and prognostic significance of heart fail-ure stages: application of the American College of Cardiology/American Heart Association heart failure staging criteria in the community. Circulation 2007;115:1563–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Bursi F, Weston SA, Redfield MM, et al. Systolic and diastolic heart failure in the community. JAMA 2006;296:2209–16.CrossRefPubMedGoogle Scholar
  4. 4.
    Redfield MM, Jacobsen SJ, Burnett JC Jr, et al. Burden of systolic and diastolic ventricular dysfunc-tion in the community: appreciating the scope of the heart failure epidemic. JAMA 2003;289:194–202.CrossRefPubMedGoogle Scholar
  5. 5.
    Mueller C, Scholer A, Laule-Kilian K, et al. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N Engl J Med 2004;350:647–54.CrossRefPubMedGoogle Scholar
  6. 6.
    De Pasquale CG, Arnolda LF, Doyle IR, et al. Plasma surfactant protein-B: a novel biomarker in chronic heart failure. Circulation 2004;110:1091–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Kishore U, Greenhough TJ, Waters P, et al. Sur-factant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 2006;43:1293–315.CrossRefPubMedGoogle Scholar
  8. 8.
    Whitsett JA, Weaver TE. Hydrophobic surfactant proteins in lung function and disease. N Engl J Med 2002;347:2141–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Hawgood S. Surfactant protein B: structure and function. Biol Neonate 2004;85:285–9.CrossRefPubMedGoogle Scholar
  10. 10.
    De Pasquale CG, Bersten AD, Doyle IR, et al. Infarct-induced chronic heart failure increases bidi-rectional protein movement across the alveolocapil-lary barrier. Am J Physiol Heart Circ Physiol 2003;284:H2136–45.PubMedGoogle Scholar
  11. 11.
    Cheitlin MD, Armstrong WF, Aurigemma GP, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article. A report of the American College of Cardi-ology/ American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Ap-plication of Echocardiography). J Am Soc Echocardiogr 2003;16:1091–110.PubMedGoogle Scholar
  12. 12.
    Nagueh SF, Appleton CP, Gillebert TC, et al. Rec-ommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009;22:107–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Doyle IR, Bersten AD, Nicholas TE. Surfactant proteins-A and -B are elevated in plasma of patients with acute respiratory failure. Am J Respir Crit Care Med 1997;156:1217–29.PubMedGoogle Scholar
  14. 14.
    Erpenbeck VJ, Ziegert M, Cavalet-Blanco D, et al. Surfactant protein D inhibits early airway response in Aspergillus fumigatus-sensitized mice. Clin Exp Allergy 2006;36:930–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Maisel A. B-type natriuretic peptide levels: diagnostic and prognostic in congestive heart failure: what’s next? Circulation 2002;105:2328–31.CrossRefPubMedGoogle Scholar
  16. 16.
    Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 2002;347:161–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Richards AM, Nicholls MG, Yandle TG, et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: new neurohormonal predictors of left ventricular function and prognosis after myo-cardial infarction. Circulation 1998;97:1921–9.PubMedGoogle Scholar
  18. 18.
    Troughton RW, Frampton CM, Yandle TG, et al. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 2000;355:1126–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Januzzi JL, Maisel AS. Routine measurement of natriuretic peptide to guide the diagnosis and man-agement of chronic heart failure. Circulation 2004;109:e325–6, author reply e325-6.CrossRefPubMedGoogle Scholar
  20. 20.
    McCullough PA, Nowak RM, McCord J, et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) multinational study. Circulation 2002;106:416–22.CrossRefPubMedGoogle Scholar
  21. 21.
    Januzzi JL Jr. Natriuretic peptide testing: a window into the diagnosis and prognosis of heart failure. Cleve Clin J Med 2006;73:149–52, 155–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Januzzi JL, Bayes-Genis A. Evolution of amino-ter-minal pro-B type natriuretic peptide testing in heart failure. Drug News Perspect 2009;22:267–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Januzzi JL Jr, Camargo CA, Anwaruddin S, et al. The N-terminal Pro-BNP Investigation of Dyspnea in the Emergency department (PRIDE) study. Am J Cardiol 2005;95:948–54.CrossRefPubMedGoogle Scholar
  24. 24.
    Luchner A, Burnett JC Jr, Jougasaki M, et al. Evaluation of brain natriuretic peptide as marker of left ventricular dysfunction and hypertrophy in the population. J Hypertens 2000;18:1121–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Luchner A, Hengstenberg C, Lowel H, et al. N-terminal pro-brain natriuretic peptide after myocardial infarction: a marker of cardio-renal function. Hypertension 2002;39:99–104.CrossRefPubMedGoogle Scholar
  26. 26.
    Redfield MM, Rodeheffer RJ, Jacobsen SJ, et al. Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol 2002;40:976–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Pascual-Figal DA, Sanchez-Mas J, de la Morena G, et al. Pulmonary surfactant protein B in the peripheral circulation and functional impairment in patients with chronic heart failure. Rev Esp Cardiol 2009;62:136–42.PubMedGoogle Scholar
  28. 28.
    Dixon DL, De Pasquale CG, De Smet HR, et al. Reduced surface tension normalizes static lung mechanics in a rodent chronic heart failure model. Am J Respir Crit Care Med 2009;180:181–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Crouch E, Hartshorn K, Ofek I. Collectins and pulmonary innate immunity. Immunol Rev 2000;173:52–65.CrossRefPubMedGoogle Scholar
  30. 30.
    Ikegami M, Hull WM, Yoshida M, et al. SP-D and GM-CSF regulate surfactant homeostasis via distinct mechanisms. Am J Physiol Lung Cell Mol Physiol 2001;281:L697–703.PubMedGoogle Scholar
  31. 31.
    Jounblat R, Clark H, Eggleton P, et al. The role of surfactant protein D in the colonisation of the respiratory tract and onset of bacteraemia during pneumococcal pneumonia. Respir Res 2005;6:126.CrossRefPubMedGoogle Scholar
  32. 32.
    Eisner MD, Parsons P, Matthay MA, et al. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 2003;58:983–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Greene KE, Wright JR, Steinberg KP, et al. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med 1999;160:1843–50.PubMedGoogle Scholar
  34. 34.
    Davis JM, Rosenfeld WN, Koo HC, Gonenne A. Pharmacologic interactions of exogenous lung sur-factant and recombinant human Cu/Zn superoxide dismutase. Pediatr Res 1994;35:37–40.PubMedGoogle Scholar
  35. 35.
    Murray MF. Invasive meningococcal disease and a need to understand host genetic susceptibility. Clin Infect Dis 2006;43:1434–5.CrossRefPubMedGoogle Scholar

Copyright information

© Urban & Vogel, Muenchen 2010

Authors and Affiliations

  • Claus Lüers
    • 1
    • 7
  • Gerrit Hagenah
    • 2
  • Rolf Wachter
    • 3
  • Sibylle Kleta
    • 3
  • Jens Schaumberg
    • 3
  • Sebastian Riedel
    • 3
  • Lutz Binder
    • 4
  • Klaus Jung
    • 5
  • Albrecht Schmidt
    • 6
  • Burkert Pieske
    • 6
  1. 1.Abteilung Innere Medizin – KardiologiePhilipps-Universität MarburgMarburgGermany
  2. 2.Nephrologisches Zentrum GöttingenGöttingenGermany
  3. 3.Abteilung Kardiologie und PneumologieUniversitätsmedizin GöttingenGöttingenGermany
  4. 4.Abteilung Klinische ChemieUniversitätsmedizin GöttingenGöttingenGermany
  5. 5.Abteilung Medizinische StatistikUniversitätsmedizin GöttingenGöttingenGermany
  6. 6.Klinische Abteilung für KardiologieMedizinische Universität GrazÖsterreichGermany
  7. 7.Klinik für Innere Medizin – KardiologiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations