Medizinische Klinik

, Volume 104, Issue 3, pp 183–191

Prävalenz eines polyglandulären Autoimmunsyndroms bei Patienten mit Diabetes mellitus Typ 1

  • Wilgard Hunger-Battefeld
  • Katharina Fath
  • Alexandra Mandecka
  • Michael Kiehntopf
  • Christof Kloos
  • Ulrich Alfons Müller
  • Gunter Wolf
ORIGINALARBEIT

Zusammenfassung

Hintergrund und Ziel:

Bei Patienten mit Diabetes mellitus Typ 1 treten gehäuft weitere endokrine Autoimmunerkrankungen (AIEK) auf. In dieser Studie wurden die Häufigkeit pathologischer Autoantikörper-(AAK-)Befunde und das Auftreten einer klinisch manifesten endokrinen AIEK (Hypophysitis, Adrenalitis, Thyreopathie, Perniziosa, Sprue) bei Patienten mit Diabetes mellitus Typ 1 im Verlauf 1 Jahres untersucht.

Patienten und Methodik:

Bei 139 Patienten mit Diabetes mellitus Typ 1 (Alter 44 ± 14 Jahre; Diabetesmanifestationsalter 26 ± 15 Jahre; Diabetesdauer 18 ± 12 Jahre; Body-Mass-Index 26 ± 4 kg/m2; HbA1c 7,5% ± 1,1% [Normalbereich 4,4–5,9%]), die in einer Universitätsklinik behandelt wurden, erfolgten ein AAK-Screening und bei pathologischem AAK-Titer eine Diagnostik hinsichtlich o.g. AIEK. Eine Befundkontrolle wurde 1 Jahr später durchgeführt.

Ergebnisse:

2003 zeigten 63% der Patienten mit Diabetes mellitus Typ 1 mindestens einen pathologischen AAK-Titer (2004: 60%) Bei 32% waren erhöhte AAK-Titer klinisch nicht relevant. Bei 31% der Patienten lag 2003 neben dem Typ-1-Diabetes mindestens eine weitere therapiepflichtige AIEK vor (2004: +3,6%): Dabei zeigten 22,3% zwei AIEK (2004: +2,2%) und 8,6% ≥ 3 AIEK (2004: +1,5%). Folgende positive AAK-Titer/Erkrankungsprävalenzen lagen vor (Vergleich 2004): positive Schilddrüsen-AAK: 47,5% (–0,7%)/Autoimmunthyreoiditis 24,5% (+2,8%) bzw. Morbus Basedow 4,3% (+0,7%), Nebennierenrinden-AAK 0,7% (+1,5%)/Morbus Addison 1,4% (±0), Gliadin-AAK bzw. Gewebsglutaminase-IgA positiv: 18,7% (–5,0%)/Sprue 1,4% (+0,8%), Parietalzellantikörper positiv: 15,8% (+7,2%)/Perniziosa 7,2% (+1,4%), Hypophysitis 0,7% (±0), Hypogonadismus 0,7% (±0). Alle Neuerkrankungen 2004 zeigten bereits im Vorjahr einen mindestens zehnfach erhöhten AAK-Titer. Zwischen Patienten mit versus ohne polyglanduläres Autoimmunsyndrom (PAS) fanden sich keine signifikanten Unterschiede bezüglich Alter (43 ± 14 vs. 46 ± 13 Jahre), Diabetesdauer (17 ± 13 vs. 18 ± 12 Jahre) und HbA1c (7,3% ± 0,9% vs. 7,6% ± 1,1%).

Schlussfolgerung:

In dieser Untersuchung wies mehr als die Hälfte der Patienten mit Diabetes mellitus Typ 1 mindestens einen weiteren pathologischen AAK-Titer auf, der jedoch keinen sicheren Rückschluss auf eine klinisch relevante AIEK zuließ. Bei 31% der Patienten lag mindestens eine weitere therapiepflichtige AIEK vor (Prävalenzanstieg um 3,6% innerhalb 1 Jahres). Bei Patienten mit Diabetes mellitus Typ 1 sollte an ein PAS gedacht werden. Eine Thyreopathie war am häufigsten und zeigte einen Prävalenzanstieg um 3,5% innerhalb 1 Jahres.

Schlüsselwörter:

Polyglanduläres Autoimmunsyndrom (PAS) Diabetes mellitus Typ 1 Autoimmunthyreoiditis Morbus Addison Hypophysitis Perniziöse Anämie 

Prevalence of Polyglandular Autoimmune Syndrome in Patients with Diabetes Mellitus Type 1

Abstract

Background and Purpose:

The aim of this study was to examine the prevalence of autoimmune antibodies (autoimmune hypophysitis, adrenalitis, thyropathy, pernicious anemia, celiac disease) and clinically relevant endocrine autoimmune disease (AIEK) in patients with type 1 diabetes in the course of 1 year.

Patients and Methods:

Antibody screening was performed in 139 diabetic patients (age 44 ± 14 years; years since diagnosis 26 ± 15 years; duration of diabetes 18 ± 12 years; body mass index 26 ± 4 kg/m2; HbA1c 7.5% ± 1.1% [normal range 4.4–5.9%]) who completed a routine clinic visit in 2003. Patients with pathologically increased antibody titers were further examined regarding the clinically relevant AIEKs. Reexamination was performed 1 year later.

Results:

In 2003, 63% of diabetic patients showed at least one pathologically increased antibody titer (2004: 60%). In 32% of the patients, increased antibody titers were clinically inapparent. Apart from diabetes mellitus type 1, in 2003, 31% suffered from other AIEK requiring therapy (2004: +3.6%): 22.3% harbored two additional AIEKs (2004: +2.2%) and 8.6% even ≥ 3 AIEKs (2004: +1.5%). The following pathologically increased antibody titers/prevalences of clinically relevant AIEKs were found (in comparison with 2004): increased antithyroid autoantibodies: 47.5% (–0.7%)/autoimmune thyroiditis 24.5% (+2.8%) and Graves’ disease 4.3% (+0.7%), respectively; adrenal cortex autoantibodies 0.7% (+1.5%)/Addison’s disease 1.4% (±0), gliadin peptide antibodies and IgA to tissue transglutaminase, respectively: 18.7% (–5.0%)/celiac disease 1.4% (+0.8%), parietal cell antibodies: 15.8% (+7.2%)/pernicious anemia 7.2% (+1.4%), hypophysitis 0.7% (±0), hypogonadism 0.7% (±0). All new AIEK manifestations in 2004 had had an at least tenfold increased antibody titer in 2003. Comparing patients with and without polyglandular autoimmune syndrome (PAS), no difference in age (43 ± 14 vs. 46 ± 13 years), duration of diabetes (17 ± 13 vs. 18 ± 12 years), and HbA1c (7.3% ± 0.9% vs. 7.6% ± 1.1%) could be found.

Conclusion:

In this study, more than half of the patients with diabetes mellitus type 1 had at least one pathologically increased antibody titer apart from diabetes without clinical sign of an additional AIEK. 31% of patients with increased antibodies presented with symptoms of another AIEK (increase by 3.6% within 1 year). Patients with diabetes mellitus type 1 should be screened for other AIEKs. Thyropathy had the greatest prevalence and increased by 3.5% within 1 year’s time.

Key Words:

Polyglandular autoimmune syndrome (PAS) Diabetes mellitus type 1 Autoimmune thyroid disease Addison’s disease Autoimmune hypophysitis Pernicious anemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Neufeld M, Maclaren NK, Blizzard RM. Two types of autoimmune Addison’s disease associated with different polyglandular autoimmune (PGA) syndromes. Medicine (Baltimore) 1981;60:355–362.CrossRefGoogle Scholar
  2. 2.
    Ahonen P, Myllarniemi S, Sipila I, et al. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990;322:1829–1836.PubMedGoogle Scholar
  3. 3.
    Leshin M. Polyglandular autoimmune syndromes. Am J Med Sci 1985;290:77–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Pholsena M, Young J, Couzinet B, et al. Primary adrenal and thyroid insufficiencies associated with hypopituitarism: a diagnostic challenge. Clin Endocrinol (Oxf) 1994;40:693–695.CrossRefGoogle Scholar
  5. 5.
    Perheentupa J. APS-I/APECED: the clinical disease and therapy. Endocrinol Metab Clin North Am 2002;31:295–320, vi.PubMedCrossRefGoogle Scholar
  6. 6.
    Schatz DA, Winter WE. Autoimmune polyglandular syndrome. II: Clinical syndrome and treatment. Endocrinol Metab Clin North Am 2002;31:339–352.PubMedCrossRefGoogle Scholar
  7. 7.
    Eisenbarth GS, Gottlieb PA. Autoimmune polyendocrine syndromes. N Engl J Med 2004;350:2068–2079.PubMedCrossRefGoogle Scholar
  8. 8.
    Weyermann D, Spinas G, Roth S, et al. [Combined endocrine autoimmune syndrome — incidence, forms of manifestation and clinical significance].Schweiz Med Wochenschr 1994;124:1971–1975.PubMedGoogle Scholar
  9. 9.
    Dittmar M, Kahaly GJ. Polyglandular autoimmune syndromes: immunogenetics and long-term follow-up. J Clin Endocrinol Metab 2003;88:2983–2992.PubMedCrossRefGoogle Scholar
  10. 10.
    Papadopoulos KI, Hallengren B. Polyglandular autoimmune syndrome type II in patients with idiopathic Addison’s disease. Acta Endocrinol (Copenh) 1990;122:472–478.Google Scholar
  11. 11.
    Kahaly G, Förster G, Otto E, et al. Diabetes mellitus Typ I als ein Teil des polyglandulären Autoimmunsyndroms. Diabetes Stoffw 1997;6:19–27.Google Scholar
  12. 12.
    Volta U, Granito A, Fiorini E, et al. Usefulness of antibodies to deamidated gliadin peptides in celiac disease diagnosis and follow-up. Dig Dis Sci 2008;53:1582–1588.PubMedCrossRefGoogle Scholar
  13. 13.
    Harms V. Biomathematik, Statistik und Dokumentation, 7. Aufl. Kiel-Mönkeberg: Harms, 1998.Google Scholar
  14. 14.
    Ten S, New M, Maclaren N. Clinical review 130: Addison’s disease 2001. J Clin Endocrinol Metab 2001;86:2909–2922.PubMedCrossRefGoogle Scholar
  15. 15.
    Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002;298:1395–1401.PubMedCrossRefGoogle Scholar
  16. 16.
    Anderson MS. Update in endocrine autoimmunity. J Clin Endocrinol Metab 2008;93:3663–3670.PubMedCrossRefGoogle Scholar
  17. 17.
    Devoss JJ, Shum AK, Johannes KP, et al. Effector mechanisms of the autoimmune syndrome in the murine model of autoimmune polyglandular syndrome type 1. J Immunol 2008;181:4072–4079.PubMedGoogle Scholar
  18. 18.
    An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. The Finnish-German APECED Consortium. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Nat Genet 1997;17:399–403.Google Scholar
  19. 19.
    Nagamine K, Peterson P, Scott HS, et al. Positional cloning of the APECED gene. Nat Genet 1997;17:393–398.PubMedCrossRefGoogle Scholar
  20. 20.
    Iannello S, Campanile E, Cipolli D, et al. [A rare case of juvenile diabetes mellitus associated with APECED (autoimmune poly-endocrinopathy, candidiasis and ectodermal dystrophy) with strong X-linked familial inheritance].Minerva Endocrinol 1997;22:51–59.PubMedGoogle Scholar
  21. 21.
    Maclaren N, Chen QY, Kukreja A, et al. Autoimmune hypogonadism as part of an autoimmune polyglandular syndrome. J Soc Gynecol Investig 2001;8:Suppl:S52–S54.PubMedCrossRefGoogle Scholar
  22. 22.
    Heino M, Peterson P, Sillanpaa N. RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. Eur J Immunol 2000;30:1884–1893.PubMedCrossRefGoogle Scholar
  23. 23.
    Vogel A, Strassburg CP, Obermayer-Straub P, et al. The genetic background of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy and its autoimmune disease components. J Mol Med 2002;80:201–211.PubMedCrossRefGoogle Scholar
  24. 24.
    Halonen M, Kangas H, Ruppell T, et al. APECED-causing mutations in AIRE reveal the functional domains of the protein. Hum Mutat 2004;23:245–257.PubMedCrossRefGoogle Scholar
  25. 25.
    Meyer G, Badenhoop K. Autoimmune regulator (AIRE) gene on chromosome 21: implications for autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) any more common manifestations of endocrine autoimmunity. J Endocrinol Invest 2002;25:804–811.PubMedGoogle Scholar
  26. 26.
    Aaltonen J, Bjorses P. Cloning of the APECED gene provides new insight into human autoimmunity. Ann Med 1999;31:111–116.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen QY, Nadell D, Zhang XY, et al. The human leukocyte antigen HLA DRB3⋆020/DQA1⋆0501 haplotype is associated with Graves’ disease in African Americans. J Clin Endocrinol Metab 2000;85:1545–1549.PubMedCrossRefGoogle Scholar
  28. 28.
    Majeroni BA, Patel P. Autoimmune polyglandular syndrome, type II. Am Fam Physician 2007;75:667–670.PubMedGoogle Scholar
  29. 29.
    Betterle C, Dal Pra C, Mantero F, et al. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr Rev 2002;23:327–364.PubMedCrossRefGoogle Scholar
  30. 30.
    Hansen D, Bennedbaek FN, Hoier-Madsen M, et al. A prospective study of thyroid function, morphology and autoimmunity in young patients with type1 diabetes. Eur J Endocrinol 2003;148:245–251.PubMedCrossRefGoogle Scholar
  31. 31.
    Kordonouri O, Hartmann R, Deiss D, et al. Natural course of autoimmune thyroiditis in type 1 diabetes: association with gender, age, diabetes duration, and puberty. Arch Dis Child 2005;90:411–414.PubMedCrossRefGoogle Scholar
  32. 32.
    Huber A, Menconi F, Corathers S, et al. Joint genetic susceptibility to type 1 diabetes and autoimmune thyroiditis: from epidemiology to mechanisms. Endocr Rev 2008;29:697–725.PubMedCrossRefGoogle Scholar
  33. 33.
    Pfannenstiel P, Hotze LA, Schaller B. Schilddrüsenkrankheiten: Diagnose und Therapie. Berlin: Berliner Medizinische Verlagsanstalt, 1999.Google Scholar
  34. 34.
    Biering H, Bohner G, Strasburger CJ. [Autoimmune hypophysitis — two case reports.] Dtsch Med Wochenschr 2005;130:2826–2828.PubMedCrossRefGoogle Scholar
  35. 35.
    Manetti L, Lupi I, Morselli LL, et al. Prevalence and functional significance of antipituitary antibodies in patients with autoimmune and non-autoimmune thyroid diseases. J Clin Endocrinol Metab 2007;92:2176–21781.PubMedCrossRefGoogle Scholar
  36. 36.
    Barker JM, Ide A, Hostetler C, et al. Endocrine and immunogenetic testing in individuals with type 1 diabetes and 21-hydroxylase autoantibodies: Addison’s disease in a high-risk population. J Clin Endocrinol Metab 2005;90:128–134.PubMedCrossRefGoogle Scholar
  37. 37.
    Degros V, Pons L, Ghulam A, et al. [21-hydroxylase autoantibodies as a marker of adrenal involvement in patients with autoimmune endocrinopathies.] Ann Biol Clin (Paris) 1999;57:705–709.Google Scholar
  38. 38.
    Falorni A, Laureti S, Nikoshkov A, et al. 21-hydroxylase autoantibodies in adult patients with endocrine autoimmune diseases are highly specific for Addison’s disease. Belgian Diabetes Registry. Clin Exp Immunol 1997;107:341–346.PubMedCrossRefGoogle Scholar
  39. 39.
    Leong KS, Wallymahmed M, Wilding J, et al. Clinical presentation of thyroid dysfunction and Addison’s disease in young adults with type 1 diabetes. Postgrad Med J 1999;75:467–470.PubMedGoogle Scholar
  40. 40.
    Yu L, Brewer KW, Gates S, et al. DRB1⋆04 and DQ alleles: expression of 21-hydroxylase autoantibodies and risk of progression to Addison’s disease. J Clin Endocrinol Metab 1999;84:328–335.PubMedCrossRefGoogle Scholar
  41. 41.
    De Block CE, De Leeuw IH, Vertommen JJ, et al. Beta-cell, thyroid, gastric, adrenal and coeliac autoimmunity and HLA-DQ types in type 1 diabetes. Clin Exp Immunol 2001;126:236–241.PubMedCrossRefGoogle Scholar
  42. 42.
    Hunger-Dathe W, Braun A, Muller UA. [Alopecia totalis, hypotension and erectile dysfunction in a 34 year old patient. Difficult clarification of a common cause.] Internist (Berl) 2005;46:690–694.CrossRefGoogle Scholar
  43. 43.
    Thomas JB, Petrovsky N, Ambler GR. Addison’s disease presenting in four adolescents with type 1 diabetes. Pediatr Diabetes 2004;5:207–211.PubMedCrossRefGoogle Scholar
  44. 44.
    Ajaz F, Kudva YC, Erwin PJ. Residual dysphasia after severe hypoglycemia in a patient with immune-mediated primary adrenal insufficiency and type 1 diabetes mellitus: case report and systematic review of the literature. Endocr Pract 2007;13:384–388.PubMedGoogle Scholar
  45. 45.
    Contreras LN, Arregger AL, Persi GG, et al. A new less-invasive and more informative low-dose ACTH test: salivary steroids in response to intramuscular corticotrophin. Clin Endocrinol (Oxf) 2004;61:675–682.CrossRefGoogle Scholar
  46. 46.
    Holst JP, Soldin SJ, Tractenberg RE, et al. Use of steroid profiles in determining the cause of adrenal insufficiency. Steroids 2007;72:71–84.PubMedCrossRefGoogle Scholar
  47. 47.
    Betterle C, Coco G, Zanchetta R. Adrenal cortex autoantibodies in subjects with normal adrenal function. Best Pract Res Clin Endocrinol Metab 2005;19:85–99.PubMedCrossRefGoogle Scholar
  48. 48.
    Hansen D, Bennedbaek FN, Hansen LK, et al. High prevalence of coeliac disease in Danish children with type I diabetes mellitus. Acta Paediatr 2001;90:1238–1243.PubMedCrossRefGoogle Scholar
  49. 49.
    Bhatnagar S, Tandon N. Diagnosis of celiac disease. Indian J Pediatr 2006;73:703–709.PubMedCrossRefGoogle Scholar
  50. 50.
    Lewis NR, Scott BB. Systematic review: The use of serology to exclude or diagnose coeliac disease (a comparison of the endomysial and tissue transglutaminase antibody tests). Aliment Pharmacol Ther 2006;24:47–54.PubMedCrossRefGoogle Scholar
  51. 51.
    Alaedini A, Green PH. Autoantibodies in celiac disease. Autoimmunity 2008;41:19–26.PubMedCrossRefGoogle Scholar
  52. 52.
    De Block CE, De Leeuw IH, Rooman RP, et al. Gastric parietal cell antibodies are associated with glutamic acid decarboxylase-65 antibodies and the HLA DQA1⋆0501-DQB1⋆0301 haplotype in Type 1 diabetes mellitus. Belgian Diabetes Registry. Diabet Med 2000;17:618–622.PubMedCrossRefGoogle Scholar
  53. 53.
    Erten G, Gurol AO, Deniz G, et al. Organ specific autoantibodies in preclinical and early clinical type 1 diabetes in Turkey. Ups J Med Sci 2007;112: 231–243.PubMedCrossRefGoogle Scholar
  54. 54.
    Zelissen PM, Bast EJ, Croughs RJ. Associated autoimmunity in Addison’s disease. J Autoimmun 1995;8:121–130.PubMedCrossRefGoogle Scholar
  55. 55.
    De Block CE, De Leeuw IH, Bogers JJ, et al. Autoimmune gastropathy in type 1 diabetic patients with parietal cell antibodies: histological and clinical findings. Diabetes Care 2003;26:82–88.PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel, Muenchen 2009

Authors and Affiliations

  • Wilgard Hunger-Battefeld
    • 1
    • 4
  • Katharina Fath
    • 2
  • Alexandra Mandecka
    • 1
  • Michael Kiehntopf
    • 3
  • Christof Kloos
    • 1
  • Ulrich Alfons Müller
    • 1
  • Gunter Wolf
    • 1
  1. 1.Klinik für Innere Medizin IIIUniversitätsklinikum JenaJenaGermany
  2. 2.Medizinische FakultätUniversitätsklinikum JenaJenaGermany
  3. 3.Institut für Klinische Chemie und LaboratoriumsdiagnostikUniversitätsklinikum JenaJenaGermany
  4. 4.Klinik für Innere Medizin IIIUniversitätsklinikum JenaJenaGermany

Personalised recommendations