Advertisement

Medizinische Klinik

, Volume 104, Issue 2, pp 119–124 | Cite as

Klinische Bedeutung der forcierten Einsekundenkapazität (FEV1) bei chronisch-obstruktiver Lungenerkrankung (COPD)

  • Adrian Gillissen
  • Thomas Glaab
  • Roland Buhl
ÜBERSICHT

Zusammenfassung

Eine Vielzahl plazebokontrollierter Studien und Metaanalysen belegt die Bedeutung der FEV1 (Einsekundenkapazität) als wichtigsten Lungenfunktionsparameter in der Diagnostik sowie als Verlaufs- und Prognoseparameter der chronisch-obstruktiven Lungenerkrankung (COPD). Der beschleunigte jährliche FEV1-Abfall weist auf eine rasche Progression der COPD hin. Umgekehrt gilt die positive Beeinflussung der FEV1 als Beleg für einen Therapieerfolg. Allerdings korreliert die FEV1 nicht regelmäßig mit anderen klinisch relevanten Zielgrößen wie Exazerbationen, Atemnot und Lebensqualität. Zudem ist unklar, ob eine pharmakologisch erzielte FEV1-Verbesserung auch langfristig mit einer Senkung der COPD-Morbidität und -Mortalität assoziiert ist. Dennoch ist die FEV1 weiterhin der am besten untersuchte Lungenfunktionswert, um den Erfolg einer COPD-Therapie und die Progression der Erkrankung in Verbindung mit anderen klinisch relevanten Zielgrößen abzubilden.

Schlüsselwörter:

Lungenfunktion FEV1 COPD 

Clinical Value of Forced Expiratory Volume in 1 s (FEV1) in Chronic Obstructive Pulmonary Disease

Abstract

There is overwhelming evidence from large-scale placebo-controlled trials but also from epidemiologic COPD (chronic obstructive pulmonary disease) studies and meta-analyses supporting FEV1 (forced expiratory volume in 1 s) as a strong diagnostic and prognostic marker that predicts future morbidity and mortality. Specifically, attenuation of reduced FEV1 is a powerful indicator of successful medical intervention and vice versa. FEV1 decline indicates an increasing risk for advanced disease stage eventually leading to further deterioration. However, it remains to be determined whether reducing the frequency of exacerbations or pharmacological improvement of FEV1 can help to slow lung function decline and consequently improve clinical outcome in these patients. All in all, FEV1 and its change over time are essential parameters in the assessment of COPD progression and efficacy of therapeutic intervention.

Key Words:

Lung function FEV1 COPD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Andreas S, Batra A, Behr J, et al. Tabakentwöhnung bei COPD. S3 Leitlinie herausgegeben von der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin. Pneumologie 2008;62:255–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Andreas S, Herth FJ, Rittmeyer A, et al. Tabakrauchen, chronisch obstruktive Lungenerkrankung und Lungenkarzinom. Pneumologie 2007;61:590–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Anthonisen NR, Connett JE, Enright PL, et al. Hospitalizations and mortality in the Lung Health Study. Am J Respir Crit Care Med 2002;166:333–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Anthonisen NR, Connett JE, Kiley JP, et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Heath Study. JAMA 1994;272:1539–41.CrossRefGoogle Scholar
  5. 5.
    Anthonisen NR, Lindgren PG, Tashkin DP, et al. Bronchodilator response in the Lung Health Study over 11 years. Eur Respir J 2005;26:45–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Anthonisen NR, Skeans M, Wise RA, et al. The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med 2005;142:233–9.PubMedGoogle Scholar
  7. 7.
    Antonelli Incalzi R, Imperiale C, Bellia V, et al. Do GOLD stages of COPD severity really correspond to difference in health status? Eur Respir J 2003;22:444–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Beeh KM, Beier J, Buhl R, et al. Wirksamkeit von Tiotropiumbromid (Spiriva) bei verschiedenen Schweregraden der chronisch-obstruktiven Lungenerkrankung (COPD). Pneumologie 2006;60:341–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Beyer H, Mitfessel H, Gillissen A. Einfluss einer elterlichen Passivrauchexposition im Kindes-und Jugendalter auf Lungenfunktion und Exazerbationsrate bei COPD Patienten. Pneumologie 2008;62:520–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Bridevaux P-O, Gerbase MW, Probst-Hensch NM, et al. COPD: long term lung function decline, utilization of care and quality of life in modified GOLD stage 1. Thorax 2008;63:768–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Budweiser S, Hitzl AP, Jörres RA, et al. Health-related quality of life and long-term prognosis in chronic hypercapnic respiratory failure: a prospective survival analysis. Respir Res 2007;8:92.PubMedCrossRefGoogle Scholar
  12. 13.
    Calverley PMA, Anderson JA, Celli BR, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 2007;356:775–89.PubMedCrossRefGoogle Scholar
  13. 14.
    Cao Z, Ong KC, Eng P, et al. Frequent hospital readmissions for acute exacerbation of COPD and their associated factors. Respirology 2006;11:188–95.PubMedCrossRefGoogle Scholar
  14. 15.
    Cazzola M, MacNee W, Martinez FJ, et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J 2008;31:416–69.PubMedCrossRefGoogle Scholar
  15. 16.
    Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 2004;23:932–46.PubMedCrossRefGoogle Scholar
  16. 17.
    Celli BR, Thomas NE, Anderson JA, et al. Effect of pharmacotherapy on rate of decline of lung function in COPD: results from the TORCH study. Am J Respir Crit Care Med 2008;178:332–8.PubMedCrossRefGoogle Scholar
  17. 18.
    Cooper CB. The connection between chronic obstructive pulmonary disease symptoms and hyperinflation and its impact on exercise and function. Am J Med 2006;119:21–31.PubMedCrossRefGoogle Scholar
  18. 19.
    Cote CG. Surrogates of mortality in chronic obstructive pulmonary disease. Am J Med 2006;119:54–62.PubMedCrossRefGoogle Scholar
  19. 20.
    Cote CG, Pinto-Pata V, Kasprzyk K, et al. The 6-min. walk distance, peak oxygen uptake, and mortality in COPD. Chest 2007;132:1778–85.PubMedCrossRefGoogle Scholar
  20. 21.
    Davey Smith G. The effects of passive smoking on health. BMJ 2003;326:1048–9.PubMedCrossRefGoogle Scholar
  21. 22.
    Decramer M, Rutten-von-Molken MPMH, Dekhuijzen PNP, et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet 2005;365:1552–60.PubMedCrossRefGoogle Scholar
  22. 23.
    Dolan S, Varkey B. Prognostic factors in chronic obstructive pulmonary disease. Curr Opin Pulm Med 2005;11:149–52.PubMedCrossRefGoogle Scholar
  23. 24.
    Donaldson GC, Seemungal TAR, Bhowmik A, et al. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002;57:847–52.PubMedCrossRefGoogle Scholar
  24. 25.
    Donohue JF. Minimal clinically important differences in COPD lung function. COPD 2005;2:111–24.PubMedGoogle Scholar
  25. 26.
    Fan VS, Ramsey SD, Make BJ, et al. Physiologic variables and functional status independently predict COPD hospitalizations and emergency department viits in patients with severe COPD. COPD 2007; 4:29–39.PubMedGoogle Scholar
  26. 27.
    Ferrer M, Villasante C, Alonso J, et al. Interpretation of quality of life scores form the St George’s Respiratory Questionaire. Eur Respir J 2002;19:405–13.PubMedCrossRefGoogle Scholar
  27. 28.
    Fletcher C, Peto R. The natural history of chronic airway obstruction. Br Med J 1977;1:1645–8.PubMedCrossRefGoogle Scholar
  28. 29.
    Garcia-Aymerich J, Farrero E, Félez MA, et al. Risk factors of readmission to hospital for a COPD exacerbation: a prospective study. Thorax 2003;58:100–5.PubMedCrossRefGoogle Scholar
  29. 30.
    Gillissen A, Buhl R, Kardos P, et al. Studienendpunkte bei der chronisch-obstruktiven Lungenerkrankung (COPD): minimal clinically important difference. Pneumologie 2008;62:149–57.PubMedCrossRefGoogle Scholar
  30. 31.
    Gillissen A, Vogelmeier C. Kortikosteroide in der Dauertherapie der chronisch-obstruktiven Lungenerkrankung (COPD). Atemw Lungenkr 2007;33:290–4.Google Scholar
  31. 32.
    Godtfredsen NS, Lam T-H, Hansel TT, et al. COPD-related morbidity and mortality after smoking cessation: status of the evidence. Eur Respir J 2008;32:844–53.PubMedCrossRefGoogle Scholar
  32. 33.
    GOLD Executive Committee. Global initiative for chronic obstructive lung disease. National Institutes of Health, Bethesda, WHO, Geneva: GOLD Executive Committee, 2007 (http://www.goldcopd. com).Google Scholar
  33. 34.
    Hajiro T, Nishimura K, Tsukino M, et al. Stages of disease severity and factors that affect the health status of patients with chronic obstructive pulmonary disease. Respir Med 2000;94:841–6.PubMedCrossRefGoogle Scholar
  34. 35.
    Higgins MW, Enright PL, Kronmal RA, et al. Smoking and lung function in elderly men and women. The Cardiovascular Health Study. JAMA 1993;269:2741–8.PubMedCrossRefGoogle Scholar
  35. 36.
    Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004;350:2645–53.PubMedCrossRefGoogle Scholar
  36. 37.
    Jones PW, Agusti AGN. Outcomes and markers in the assessment of chronic obstructive pulmonary disease. Eur Respir J 2006;27:822–32.PubMedCrossRefGoogle Scholar
  37. 38.
    Kanner RE, Connett JE, Williams DE, et al. Effects of randomized assignment to a smoking cessation intervention and changes in smoking habits on respiratory symptoms in smokers with early chronic obstructive pulmonary disease: the Lung Health Study. Am J Med 1999;106:410–6.PubMedCrossRefGoogle Scholar
  38. 39.
    Kerstjens HAM, Brand PLP, Postma DS. Risk factors for accelerated decline among patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1996;154:Suppl:S266–72.PubMedGoogle Scholar
  39. 40.
    Kiley JP, Sri Ram J, Croxton TL, et al. Challenges association with estimating minimal clinically important differences in COPD - the NHLBI perspective. COPD 2005;2:43–6.PubMedCrossRefGoogle Scholar
  40. 41.
    The Lung Health Study Group. Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease. N Engl J Med 2000;343:1902–9.CrossRefGoogle Scholar
  41. 42.
    Mahler DA, Harver A. A factor analysis of dyspnea ratings, respiratory muscle strength, and lung function in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1992;145:467–70.PubMedGoogle Scholar
  42. 43.
    Makris D, Moschandreas J, Damianaki A, et al. Exacerbations and lung function decline in COPD: new insights in current and ex-smokers. Respir Med 2007;101:1305–12.PubMedCrossRefGoogle Scholar
  43. 44.
    Mannino DM, Buist AS, Petty TL, et al. Lung function and mortality in the United States: data from the first national health and nutrition examination survey follow up study. Thorax 2003;58:388–93.PubMedCrossRefGoogle Scholar
  44. 45.
    Mannino DM, Davis KJ. Lung function decline and outcomes in an elderly population. Thorax 2006;61:472–7.PubMedCrossRefGoogle Scholar
  45. 46.
    Martinez FJ, Foster G, Curtis JL, et al. Predictors of mortality in patients with emphysema and severe airflow obstruction. Am J Respir Crit Care Med 2006;173:1326–34.PubMedCrossRefGoogle Scholar
  46. 47.
    Metin G, Oztürk L, Duman ES, et al. Exercise duration rather than peak oxygen uptake better correlates with FEV1 and inspiratory capacity in chronic obstructive pulmonary disease. Arch Med Res 2007;38:876–81.PubMedCrossRefGoogle Scholar
  47. 48.
    Miravitlles M, Guerrero T, Mayordomo T, et al. Factors associated with increased risk of exacerbation and hospital admission in a cohort of ambulatory COPD patients: a multiple logistic regression analysis. The EOLO Study Group. Respiration 2000;67:495–501.PubMedCrossRefGoogle Scholar
  48. 49.
    National Institute for Clinical Excellence. Chronic obstructive pulmonary disease: management of adults with chronic obstructive pulmonary disease in primary and secondary care. London: NICE, 2004.Google Scholar
  49. 50.
    Niewoehner DE, Rice K, Cote C, et al. Prevention of exacerbations of chronic obstructive pulmonary disease with tiotropium, a once-daily inhaled anticholinergic bronchodilator: a randomized trial. Ann Intern Med 2005;143:317–26.PubMedGoogle Scholar
  50. 51.
    O’Donnell DE. Hyperinflation, dyspnea, and exercise intolerance in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006;3:180–4.PubMedCrossRefGoogle Scholar
  51. 52.
    Pauwels RA, Lofdahl C-G, Laitinen LA, et al. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. N Engl J Med 1999;340:1948–53.PubMedCrossRefGoogle Scholar
  52. 53.
    Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J 2005;26:948–68.PubMedCrossRefGoogle Scholar
  53. 54.
    Rabe KF, Hurd SS, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. GOLD Executive Summary. Am J Respir Crit Care Med 2007;176:532–55.PubMedCrossRefGoogle Scholar
  54. 55.
    Raupach T, Radon K, Nowak D, et al. Passivrauchen: gesundheitliche Folgen, Effekte einer Expositionskarenz und Präventionsaspekte. Pneumologie 2008;62:44–50.PubMedCrossRefGoogle Scholar
  55. 56.
    Rennard SI, Decramer M, Calverley PMA, et al. Impact of COPD in North America and Europe in 2000: subjects’ perspective of confronting COPD international survey. Eur Respir J 2002;20: 799–805.PubMedCrossRefGoogle Scholar
  56. 57.
    Robbins AS, Abbey DE, Lebowitz MD. Passive smoking and chronic respiratory disease symptoms in non-smoking adults. Int J Epidemiol 1993;22:809–17.PubMedCrossRefGoogle Scholar
  57. 58.
    Rodriguez BL, Masaki K, Burchfiel C. Pulmonary function decline and 17-year total mortality: the Honolulu Heart Program. Am J Epidemiol 1994;140:398–408.PubMedGoogle Scholar
  58. 59.
    Rutgers SR, Postma DS, ten Hacken NH, et al. Ongoing airway inflammation in patients with COPD who do not currently smoke. Chest 2000;117Suppl 1:262S.PubMedCrossRefGoogle Scholar
  59. 60.
    Scanlon PD, Connett JE, Waller LA, et al. Smoking cessation and lung function in mild-to-moderate chronic obstructive pulmonary disease. The Lung Health Study. Am J Respir Crit Care Med 2000;161:381–90.PubMedGoogle Scholar
  60. 61.
    Sciurba FC, Criner GJ, Lee SM, et al., National Emphysema Treatment Research Group. Six-minute walk distance in chronic obstructive pulmonary disease: reproducibility and effect of walking course layout and length. Am J Respir Crit Care Med 2003;167:1522–7.PubMedCrossRefGoogle Scholar
  61. 62.
    Silverman EK. Exacerbations in chronic obstructive pulmonary disease: do they contribute to disease progression ? Proc Am Thorac Soc 2007;4:586–90.PubMedCrossRefGoogle Scholar
  62. 63.
    Soler-Cataluna JJ, Martinez-Garcia MA, Roman Sanchez P, et al. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax 2005;60:925–31.PubMedCrossRefGoogle Scholar
  63. 64.
    Soriano JB, Sin DD, Zhang X, et al. A pooled analysis of FEV1 decline in COPD patients randomized to inhaled corticosteroide or placebo. Chest 2007;131:682–9.PubMedCrossRefGoogle Scholar
  64. 65.
    Stahl E, Lindberg A, Jansson S-A, et al. Health-related quality of life is related to COPD disease severity. Health Qual Life Outcomes 2005;3:56.PubMedCrossRefGoogle Scholar
  65. 66.
    Suissa S. Effectiveness of inhaled corticosteroids in chronic obstructive pulmonary disease. Immortal time bias in observational studies. Am J Respir Crit Care Med 2003;168:49–53.PubMedCrossRefGoogle Scholar
  66. 67.
    Suissa S, Ernst P, Vandemheen KL, et al. Methodological issues in therapeutic trials of chronic obstructive pulmonary disease. Eur Respir J 2008:in press.Google Scholar
  67. 68.
    Svanes C, Omenass E, Jarvis D, et al. Parental smoking in childhood and adult obstructive lung disease: results from the European Community Respiratory Health Survey. Thorax 2004;59:295–302.PubMedCrossRefGoogle Scholar
  68. 69.
    Tashkin DP. The role of patient-centered outcomes in the course of chronic obstructive pulmonary disease: how long-term studies contribute to our understanding. Am J Med 2006;119:63–72.PubMedCrossRefGoogle Scholar
  69. 70.
    Tashkin DP, Celli BR, Senn S, et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med 2008;359:1543–54.PubMedCrossRefGoogle Scholar
  70. 71.
    Taube C, Holz O, Mücke M, et al. Airway response to inhaled hypertonic saline in patients with moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;164:1810–5.PubMedGoogle Scholar
  71. 72.
    Thomason MJ, Strachan DP. Which spirometric indices best predict subsequent death from chronic obstructive pulmonary disease? Thorax 2000;55: 785–8.PubMedCrossRefGoogle Scholar
  72. 73.
    U.S. Department of Health and Human Services, Center of Disease Control. The health consequences of involuntary exposure to tobacco smoke. A report of the Surgeon General. Pittsburgh: U.S. Government Printing Office, 2006 (http://www.cdc. gov/tobacco).Google Scholar
  73. 74.
    Vernooy JH, Kucukaycan M, Jacobs JA, et al. Local and systemic inflammation in patients with chronic obstructive pulmonary disease: soluble tumor necrosis factor receptors are increased in sputum. Am J Respir Crit Care Med 2002;166:1218–24.PubMedCrossRefGoogle Scholar
  74. 75.
    Vestbo J, Sørensen T, Lange P, et al. Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 1999;355:1819–23.CrossRefGoogle Scholar
  75. 76.
    Vogelmeier C, Buhl R, Criee C-P, et al. Leitlinie der Deutschen Atemwegsliga und der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin zur Diagnostik und Therapie von Patienten mit chronisch obstruktiver Bronchitis und Lungenemphysem (COPD). Pneumologie 2007;61:e1–40.PubMedCrossRefGoogle Scholar
  76. 77.
    Wise RA. The value of forced expiratory volume in 1 second decline in the assessment of chronic obstructive pulmonary disease progression. Am J Med 2006;119:S4–11.CrossRefGoogle Scholar
  77. 78.
    Xu X, Rijcken B, Schouten JP, et al. Airways responsiveness and development and remission of chronic respiratory symptoms in adults. Lancet 1997;350:1431–4.PubMedCrossRefGoogle Scholar
  78. 79.
    Young RP, Hopkins R, Eaton TE. Forced expiratory volume in one second: not just a lung function test but a marker of premature death from all causes. Eur Respir J 2007;30:616–22.PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel, Muenchen 2009

Authors and Affiliations

  1. 1.Robert-Koch-KlinikThoraxzentrum des Klinikums St. GeorgLeipzigGermany
  2. 2.III. Medizinische Klinik, Schwerpunkt PneumologieUniversitätskliniken MainzMainzGermany
  3. 3.Robert-Koch-KlinikThoraxzentrum des Klinikums St. GeorgLeipzigGermany

Personalised recommendations