Fusion of Preoperative MRI and Postoperative FD-CT for Direct Evaluation of Cochlear Implants

An Analysis at 1.5 T and 3 T
  • Felix EisenhutEmail author
  • Lava Taha
  • Isabella Kleibe
  • Joachim Hornung
  • Heinrich Iro
  • Arnd Doerfler
  • Stefan Lang
Original Article



This study was carried out to evaluate the diagnostic value of merging preoperative magnetic resonance imaging (MRI) with postoperative flat-panel computed tomography (FD-CT) and compare it to standard postoperative FD-CT for assessment of cochlear implant (CI) insertion.


The T2-weighted (T2w) constructive interference in steady state (CISS) data sets of preoperative 1.5 T and 3 T MRI scans of CI patients with both regular and adverse implant spiralization were co-registered with the corresponding postoperative FD-CT data sets using defined anatomic landmarks. These merged FD-CT/MRI volumes (CMV) were compared to the corresponding postoperative FD-CT MPRs in consensus reading with respect to qualitative, i.e. scala tympani spiralization, scala vestibuli spiralization, scalar translocation and quantitative, i.e. distance of the last electrode to the lateral cochlea wall (D1) distance of the 2nd/5th electrode to the basal cochlear wall (D2) and the transition point (TP) of the scalar translocation, parameters.


In total 30 patients (n 1.5T MRI = 18 patients; n 3T MRI = 12 patients) were included in the analysis. In all cases both CMVs and FD-CT MPRs were generated. Qualitative analysis of intracochlear CI position with CMVs (both 1.5 T and 3 T) and FD-CT was equivalent: In 20 patients the CI showed a regular implant spiralization, in 10 cases a scalar translocation was identified with both CMVs and FD-CT. Quantitative analysis showed a high level of congruency between CMVs (both 1.5 T and 3T) and FD-CT for fusion accuracy (D1: mean FD-CT D1 = 1.30 ± 0.7 mm; mean CMV D1 = 1.27 ± 0.77 mm, correlation r = 0.94, p < 0.0001; D2: mean FD-CT D2 = 1.17 ± 0.34 mm; mean CMV D2 = 1.10 ± 0.31 mm, correlation r = 0.89, p < 0.0001) and TP of the scalar translocation (mean FD-CT = 126.0 ± 59.25°, mean CMV = 117.0 ± 52.82°, correlation r = 0.95, p < 0.0001).


The co-registration of preoperative 1.5 and 3 T MRI with postoperative FD-CT enables a direct evaluation of the position of a CI equivalent to the current standard FD-CT. Despite the fact that CMV provided no additional diagnostic value in this series, regardless whether preoperative 1.5 or 3 T MRI was used for co-registration, it might help to simplify postoperative CI diagnostics.


Scalar translocation Merging Cochlear implant Flat panel computed tomography Magnetic resonance imaging 


Compliance with ethical guidelines

Conflict of interest

F. Eisenhut, L. Taha, I. Kleibe, J. Hornung, H. Iro, A. Doerfler and S. Lang declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Lenarz T. Cochlear implant—state of the art. Laryngorhinootologie. 2017;96(S 01):S123–51.CrossRefPubMedGoogle Scholar
  2. 2.
    Lin K, Marrinan MS, Waltzman SB, Roland JT Jr.. Multichannel cochlear implantation in the scala vestibuli. Otol Neurotol. 2006;27:634-8.CrossRefPubMedGoogle Scholar
  3. 3.
    Kiefer J, Weber A, Pfennigdorff T, von Ilberg C. Scala vestibuli insertion in cochlear implantation: a valuable alternative for cases with obstructed scala tympani. ORL J Otorhinolaryngol Relat Spec. 2000;62:251-6.CrossRefPubMedGoogle Scholar
  4. 4.
    O’Connell BP, Hunter JB, Wanna GB. The importance of electrode location in cochlear implantation. Laryngoscope Investig Otolaryngol. 2016;1:169–74.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ellul S, Shelton C, Davidson HC, Harnsberger HR. Preoperative cochlear implant imaging: is magnetic resonance imaging enough? Am J Otol. 2000;21:528–33.PubMedGoogle Scholar
  6. 6.
    Booth TN, Wick C, Clarke R, Kutz JW, Medina M, Gorsage D, Xi Y, Isaacson B. Evaluation of the Normal Cochlear Second Interscalar Ridge Angle and Depth on 3D T2-Weighted Images: a Tool for the Diagnosis of Scala Communis and Incomplete Partition Type II. AJNR Am J Neuroradiol. 2018;39:923–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Talenti G, Manara R, Brotto D, D’Arco F. High-resolution 3 T magnetic resonance findings in cochlear hypoplasias and incomplete partition anomalies: a pictorial essay. Br J Radiol. 2018;91(1089):20180120.CrossRefPubMedGoogle Scholar
  8. 8.
    Trimble K, Blaser S, James AL, Papsin BC. Computed tomography and/or magnetic resonance imaging before pediatric cochlear implantation? Developing an investigative strategy. Otol Neurotol. 2007;28:317–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Struffert T, Hertel V, Kyriakou Y, Krause J, Engelhorn T, Schick B, Iro H, Hornung J, Doerfler A. Imaging of cochlear implant electrode array with flat-detector CT and conventional multislice CT: comparison of image quality and radiation dose. Acta Otolaryngol. 2010;130:443–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Struffert T, Hauer M, Banckwitz R, Köhler C, Royalty K, Doerfler A. Effective dose to patient measurements in flat-detector and multislice computed tomography: a comparison of applications in neuroradiology. Eur Radiol. 2014;24:1257–65.CrossRefPubMedGoogle Scholar
  11. 11.
    Neri E, Berrettini S, Salvatori L, Forli F, Franceschini SS, Bartolozzi C. 3‑D CT and MRI co-registration in the assessment of cochlear implantation. Med Sci Monit. 2005;11:MT63-7.PubMedGoogle Scholar
  12. 12.
    Jacob R, Lissek F, Stelzig Y, Waldeck S, Veit D. Scalenwechsel der CI Elektrode: Eine Analyse der Beurteilungsqualität verschiedener Bildgebungen. Laryngol Rhinol Otol. 2018;97(S 02):10126.CrossRefGoogle Scholar
  13. 13.
    Dragovic AS, Stringer AK, Campbell L, Shaul C, O’Leary SJ, Briggs RJ. Co-registration of cone beam CT and preoperative MRI for improved accuracy of electrode localization following cochlear implantation. Cochlear Implants Int. 2018;19:147–52.CrossRefPubMedGoogle Scholar
  14. 14.
    Sipari S, Iso-Mustajärvi M, Löppönen H, Dietz A. The Insertion Results of a Mid-scala Electrode Assessed by MRI and CBCT Image Fusion. Otol Neurotol. 2018;39:e1019-25.CrossRefPubMedGoogle Scholar
  15. 15.
    Hinkmann FM, Voit HL, Anders K, Baum U, Seidensticker P, Bautz WA, Lell MM. Ultra-fast carotid CT-angiography: low versus standard volume contrast material protocol for a 128-slice CT-system. Invest Radiol. 2009;44:257-64.CrossRefPubMedGoogle Scholar
  16. 16.
    Verbist BM, Skinner MW, Cohen LT, Leake PA, James C, Boëx C, Holden TA, Finley CC, Roland PS, Roland JT Jr, Haller M, Patrick JF, Jolly CN, Faltys MA, Briaire JJ, Frijns JH. Consensus panel on a cochlear coordinate system applicable in histologic, physiologic, and radiologic studies of the human cochlea. Otol Neurotol. 2010;31:722–30.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Skinner MW, Holden TA, Whiting BR, Voie AH, Brunsden B, Neely JG, Saxon EA, Hullar TE, Finley CC. In vivo estimates of the position of advanced bionics electrode arrays in the human cochlea. Ann Otol Rhinol Laryngol Suppl. 2007;197:2–24.CrossRefGoogle Scholar
  18. 18.
    Wanna GB, Noble JH, Carlson ML, Gifford RH, Dietrich MS, Haynes DS, Dawant BM, Labadie RF. Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope. 2014;124 Suppl 6:S1-7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Boyer E, Karkas A, Attye A, Lefournier V, Escude B, Schmerber S. Scalar localization by cone-beam computed tomography of cochlear implant carriers: a comparative study between straight and periomodiolar precurved electrode arrays. Otol Neurotol. 2015;36:422–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Fischer N, Pinggera L, Weichbold V, Dejaco D, Schmutzhard J, Widmann G. Radiologic and functional evaluation of electrode dislocation from the scala tympani to the scala vestibuli in patients with cochlear implants. AJNR Am J Neuroradiol. 2015;36:372–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeuroradiologyUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Department of Otorhinolaryngology, Head and Neck SurgeryUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations