Freiburg Neuropathology Case Conference

Posterior Fossa Mass in an Infant
  • C. A. TaschnerEmail author
  • D. Erny
  • M. J. Shah
  • H. Urbach
  • U. Feige
  • M. Prinz
Clinical Case

Case Report

A 10-month-old boy became conspicuous 4–6 weeks before hospital admission with backward tilting of his head. He was finally admitted to hospital for decreased vigilance that had started 2 days prior to admission. Apart from anisocoric pupils the patient did not show any neurological deficits on admission. Magnetic resonance imaging (MRI) of the head showed an obstructive hydrocephalus in relation with a massive posterior fossa tumor. An external ventricular drainage was immediately placed. The subsequent craniotomy and operative excision of the tumor was performed with the patient in prone position. The tumor appeared cystic, with moderate bleeding and showed necrotic components. The tumor was resected down to the level of the fourth ventricle. Ventral to this level a separation from the cranial nerves and the brain stem was not possible, so that a significant amount of residual tumor remained. The postoperative course was uneventful. Apart from a slight strabismus there...


Posterior fossa tumor Infratentorial astrocytoma Medulloblastoma Atypical teratoid/rhabdoid tumor Anaplastic ependymoma 


Compliance with ethical guidelines

Conflict of interest

C.A. Taschner, D. Erny, M.J. Shah, H. Urbach, U. Feige and M. Prinz declare that they have no competing interests.

Ethical standards

All investigations described in this manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current revised form). Informed consent was obtained from the patient in this case if identifiable from images or other information within the manuscript. In the case of the underage patient in this report, informed consent was obtained from the legal representatives.


  1. 1.
    Spennato P, Nicosia G, Quaglietta L, Donofrio V, Mirone G, Di Martino G, Guadagno E, del Basso de Caro ML, Cascone D, Cinalli G. Posterior fossa tumors in infants and neonates. Childs Nerv Syst. 2015;31:175–7.CrossRefGoogle Scholar
  2. 2.
    Lee YY, Van Tassel P, Bruner JM, Moser RP, Share JC. Juvenile pilocytic astrocytomas: CT and MR characteristics. AJR Am J Roentgenol. 1989;152:1263–70.CrossRefGoogle Scholar
  3. 3.
    Nakano Y, Yamamoto J, Takahashi M, Soejima Y, Akiba D, Kitagawa T, Ueta K, Miyaoka R, Umemura T, Nishizawa S. Pilocytic astrocytoma presenting with atypical features on magnetic resonance imaging. J Neuroradiol. 2015;42:278–82.CrossRefGoogle Scholar
  4. 4.
    Gaudino S, Martucci M, Russo R, Visconti E, Gangemi E, D’Argento F, Verdolotti T, Lauriola L, Colosimo C. MR imaging of brain pilocytic astrocytoma: Beyond the stereotype of benign astrocytoma. Childs Nerv Syst. 2017;33:35–54.CrossRefGoogle Scholar
  5. 5.
    Rumboldt Z, Camacho DL, Lake D, Welsh CT, Castillo M. Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol. 2006;27(6):1362–9.Google Scholar
  6. 6.
    Zitouni S, Koc G, Doganay S, Saracoglu S, Gumus KZ, Ciraci S, Coskun A, Unal E, Per H, Kurtsoy A, Kontas O. Apparent diffusion coefficient in differentiation of pediatric posterior fossa tumors. Jpn J Radiol. 2017;35:448–53.CrossRefGoogle Scholar
  7. 7.
    Domínguez-Pinilla N, Martínez de Aragón A, Diéguez Tapias S, Toldos O, Hinojosa Bernal J, Rigal Andrés M, González-Granado LI. Evaluating the apparent diffusion coefficient in MRI studies as a means of determining paediatric brain tumour stages. Evaluación de la utilidad del coeficiente de difusión aparente en resonancia magnética para la diferenciación del grado tumoral de los tumores cerebrales pediátricos. Neurologia. 2016;31:459–65.CrossRefGoogle Scholar
  8. 8.
    Alkonyi B, Nowak J, Gnekow A, Pietsch T, Warmuth-Metz M. Differential imaging characteristics and dissemination potential of pilomyxoid astrocytomas versus pilocytic astrocytomas. Neuroradiology. 2015;57:625–38.CrossRefGoogle Scholar
  9. 9.
    Colafati GS, Voicu IP, Carducci C, Miele E, Carai A, Di Loreto S, Marrazzo A, Cacchione A, Cecinati V, Tornesello A, Mastronuzzi A. MRI features as a helpful tool to predict the molecular subgroups of medulloblastoma: State of the art. Ther Adv Neurol Disord. 2018;11:17–9.CrossRefGoogle Scholar
  10. 10.
    Kline CN, Packer RJ, Hwang EI, Raleigh DR, Braunstein S, Raffel C, Bandopadhayay P1, Solomon DA1, Aboian M1, Cha S1, Mueller S1. Case-based review: Pediatric medulloblastoma. Neurooncol Pract. 2017;4:138–50.PubMedCentralGoogle Scholar
  11. 11.
    Rodriguez Gutierrez D, Awwad A, Meijer L, Manita M, Jaspan T, Dineen RA, Grundy RG, Auer DP. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. AJNR Am J Neuroradiol. 2014;35:1009–15.CrossRefGoogle Scholar
  12. 12.
    Erdem E, Zimmerman RA, Haselgrove JC, Bilaniuk LT, Hunter JV. Diffusion-weighted imaging and fluid attenuated inversion recovery imaging in the evaluation of primitive neuroectodermal tumors. Neuroradiology. 2001;43:927–33.CrossRefGoogle Scholar
  13. 13.
    Rollins N, Mendelsohn D, Mulne A, Barton R, Diehl J, Reyes N, Sklar F. Recurrent medulloblastoma: Frequency of tumor enhancement on Gd-DTPA MR imaging. AJNR Am J Neuroradiol. 1990;11:583–7.Google Scholar
  14. 14.
    Bühring U, Strayle-Batra M, Freudenstein D, Scheel-Walter HG, Küker W. MRI features of primary, secondary and metastatic medulloblastoma. Eur Radiol. 2002;12:1342–8.CrossRefGoogle Scholar
  15. 15.
    Aboian MS, Kline CN, Li Y, Solomon DA, Felton E, Banerjee A, Braunstein SE, Mueller S, Dillon WP, Cha S. Early detection of recurrent medulloblastoma: The critical role of diffusion-weighted imaging. Neurooncol Pract. 2018;5:234–40.Google Scholar
  16. 16.
    Koral K, Gargan L, Bowers DC, Gimi B, Timmons CF, Weprin B, Rollins NK. Imaging characteristics of atypical teratoid-rhabdoid tumor in children compared with medulloblastoma. AJR Am J Roentgenol. 2008;190:809–14.CrossRefGoogle Scholar
  17. 17.
    Tekautz TM, Fuller CE, Blaney S, Fouladi M, Broniscer A, Merchant TE, Krasin M, Dalton J, Hale G, Kun LE, Wallace D, Gilbertson RJ, Gajjar A. Atypical teratoid/rhabdoid tumors (ATRT): Improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J Clin Oncol. 2005;23:1491–9.CrossRefGoogle Scholar
  18. 18.
    Ginn KF, Gajjar A. Atypical teratoid rhabdoid tumor: Current therapy and future directions. Front Oncol. 2012;2:114.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Zacharoulis S, Moreno L. Ependymoma: An update. J Child Neurol. 2009;24:1431–8.CrossRefGoogle Scholar
  20. 20.
    Zacharoulis S, Ji L, Pollack IF, Duffner P, Geyer R, Grill J, Schild S, Jaing TH, Massimino M, Finlay J, Sposto R. Metastatic ependymoma: A multi-institutional retrospective analysis of prognostic factors. Pediatr Blood Cancer. 2008;50:231–5.CrossRefGoogle Scholar
  21. 21.
    McKean-Cowdin R, Razavi P, Barrington-Trimis J, Baldwin RT, Asgharzadeh S, Cockburn M, Tihan T, Preston-Martin S. Trends in childhood brain tumor incidence, 1973–2009. J Neurooncol. 2013;115:153–60.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Barkovich AJ. Pediatric neuroimaging. Philadelphia: Lippincott Williams & Wilkins; 2005.Google Scholar
  23. 23.
    Swartz JD, Zimmerman RA, Bilaniuk LT. Computed tomography of intracranial ependymomas. Radiology. 1982;143:97–101.CrossRefGoogle Scholar
  24. 24.
    Yuh EL, Barkovich AJ, Gupta N. Imaging of ependymomas: MRI and CT. Childs Nerv Syst. 2009;25:1203–13.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Otero JJ, Rowitch D, Vandenberg S. OLIG2 is differentially expressed in pediatric astrocytic and in ependymal neoplasms. J Neurooncol. 2011;104:423–38.CrossRefGoogle Scholar
  26. 26.
    Spence T, Sin-Chan P, Picard D, Barszczyk M, Hoss K, Lu M, Kim SK, Ra YS, Nakamura H, Fangusaro J, Hwang E, Kiehna E, Toledano H, Wang Y, Shi Q, Johnston D, Michaud J, La Spina M, Buccoliero AM, Adamek D, Camelo-Piragua S, Peter Collins V, Jones C, Kabbara N, Jurdi N, Varlet P, Perry A, Scharnhorst D, Fan X, Muraszko KM, Eberhart CG, Ng HK, Gururangan S, Van Meter T, Remke M, Lafay-Cousin L, Chan JA, Sirachainan N, Pomeroy SL, Clifford SC, Gajjar A, Shago M, Halliday W, Taylor MD, Grundy R, Lau CC, Phillips J, Bouffet E, Dirks PB, Hawkins CE, Huang A. CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity. Acta Neuropathol. 2014;128:291–303.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, editors. WHO classification of tumours of the central nervous system. Lyon: International Agency for Research on Cancer; 2016.Google Scholar
  28. 28.
    Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 1999;59:74–9.Google Scholar
  29. 29.
    Purdy E, Johnston DL, Bartels U, Fryer C, Carret AS, Crooks B, Eisenstat DD, Lafay-Cousin L, Larouche V, Wilson B, Zelcer S, Silva M, Bouffet E, Keene D, Strother DR. Ependymoma in children under the age of 3 years: A report from the Canadian Pediatric Brain Tumour Consortium. J Neurooncol. 2014;117:359–64.CrossRefGoogle Scholar
  30. 30.
    Duncan J, Lows E Jr. Intracranial ependymomas. In: Kaye A, Lows E Jr, editors. Brain tumors. Edinburgh: Churchill Livingstone; 1995. pp. 493–504.Google Scholar
  31. 31.
    Taschner CA, Erny D, Shah MJ, Urbach H, Lutz K, Prinz M. Freiburg Neuropathology Case Conference: An infant with a supratentorial mass lesion. Clin Neuroradiol. 2015;25:211–7.CrossRefGoogle Scholar
  32. 32.
    Ellison DW, Kocak M, Figarella-Branger D, Felice G, Catherine G, Pietsch T, Frappaz D, Massimino M, Grill J, Boyett JM, Grundy RG. Histopathological grading of pediatric ependymoma: Reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed. 2011;10:7.CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hubner JM, Kool M, Pfister SM, Pajtler KW. Epidemiology, molecular classification and WHO grading of ependymoma. J Neurosurg Sci. 2018;62:46–50.Google Scholar
  34. 34.
    Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, Wani K, Tatevossian R, Punchihewa C, Johann P, Reimand J, Warnatz HJ, Ryzhova M, Mack S, Ramaswamy V, Capper D, Schweizer L, Sieber L, Wittmann A, Huang Z, van Sluis P, Volckmann R, Koster J, Versteeg R, Fults D, Toledano H, Avigad S, Hoffman LM, Donson AM, Foreman N, Hewer E, Zitterbart K, Gilbert M, Armstrong TS, Gupta N, Allen JC, Karajannis MA, Zagzag D, Hasselblatt M, Kulozik AE, Witt O, Collins VP, von Hoff K, Rutkowski S, Pietsch T, Bader G, Yaspo ML, von Deimling A, Lichter P, Taylor MD, Gilbertson R, Ellison DW, Aldape K, Korshunov A, Kool M, Pfister SM. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27:728–43.CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Capper D, Weissert S, Balss J, Habel A, Meyer J, Jäger D, Ackermann U, Tessmer C, Korshunov A, Zentgraf H, Hartmann C, von Deimling A. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol. 2010;20:245–54.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • C. A. Taschner
    • 1
    Email author
  • D. Erny
    • 2
  • M. J. Shah
    • 3
  • H. Urbach
    • 1
  • U. Feige
    • 1
  • M. Prinz
    • 2
  1. 1.Department of Neuroradiology, Medical Centre—University of FreiburgUniversity of FreiburgFreiburgGermany
  2. 2.Department of Neuropathology, Medical Centre—University of FreiburgUniversity of FreiburgFreiburgGermany
  3. 3.Department of Neurosurgery, Medical Centre—University of FreiburgUniversity of FreiburgFreiburgGermany

Personalised recommendations