Advertisement

Function-specific Tractography of Language Pathways Based on nTMS Mapping in Patients with Supratentorial Lesions

  • Nico Sollmann
  • Haosu Zhang
  • Severin Schramm
  • Sebastian Ille
  • Chiara Negwer
  • Kornelia Kreiser
  • Bernhard Meyer
  • Sandro M. Krieg
Original Article
  • 14 Downloads

Abstract

Purpose

In patients with supratentorial lesions diffusion tensor imaging fiber tracking (DTI-FT) is increasingly used to visualize subcortical fiber courses. Navigated transcranial magnetic stimulation (nTMS) was applied in this study to reveal specific cortical functions by investigating the particular language errors elicited by stimulation. To make DTI-FT more function-specific, the identified language-positive nTMS spots were used as regions of interest (ROIs).

Methods

In this study 40 patients (mean age 53.8 ± 16.0 years) harboring language-eloquent left hemispheric lesions underwent preoperative nTMS language mapping. All induced error categories were separately defined as a ROI and used for function-specific nTMS-based DTI-FT. The fractions of patients showing various subcortical language-related pathways and the fibers-per-tract ratio (number of visualized fibers divided by the number of visualized tracts) were evaluated and compared for tractography with the single error types against less specific tractography including all identified cortical language sites (all errors except hesitations).

Results

The nTMS-based DTI-FT using all errors except hesitations led to high fractions of visualized tracts (81.1% of patients), with a fibers-per-tract ratio of 538.4 ± 340.5. When only using performance errors, a predominant visualization of the superior longitudinal fascicle (SLF) occurred, which is known to be involved in articulatory processes. Fibers-per-tract ratios were comparatively stable for all single error categories when compared to all errors except hesitations (p > 0.05).

Conclusion

This is one of the first studies aiming on function-specific tractography. The results demonstrated that when using different error categories as ROIs, more detailed nTMS-based DTI-FT and, therefore, potentially superior intraoperative guidance becomes possible.

Keywords

Diffusion tensor imaging Fiber tracking Glioma Navigated transcranial magnetic stimulation Preoperative imaging 

Abbreviations

3D

Three-dimensional

AAT

Aachen Aphasia Test

AF

Arcuate fascicle

ArF

Arcuate fibers

AVM

Arteriovenous malformation

BMRC

British Medical Research Council

CF

Commissural fibers

CNT

Corticonuclear tract

CtF

Corticothalamic fibers

DES

Direct electrical stimulation

DTI

Diffusion tensor imaging

DTI-FT

Diffusion tensor imaging fiber tracking

FA

Fractional anisotropy

FAT

Fractional anisotropy threshold

FL

Fiber length

FLAIR

Fluid attenuated inversion recovery

fMRI

Functional magnetic resonance imaging

FoF

Fronto-occipital fascicle

ILF

Inferior longitudinal fascicle

KPS

Karnofsky performance status

MRI

Magnetic resonance imaging

nTMS

Navigated transcranial magnetic stimulation

rMT

Resting motor threshold

ROI

Region of interest

SD

Standard deviation

SLF

Superior longitudinal fascicle

UC

Uncinate fascicle

WHO

World Health Organization

Notes

Funding

The study was completely financed by institutional grants from the Department of Neurosurgery and the Department of Neuroradiology.

Compliance with ethical guidelines

Conflict of interest

N. Sollmann received fees from Nexstim Plc (Helsinki, Finland). S.M. Krieg is consultant for Nexstim Plc (Helsinki, Finland) and received fees from Medtronic (Meerbusch, Germany) and Carl Zeiss Meditec (Oberkochen, Germany). S.M. Krieg and B. Meyer received research grants and are consultants for Brainlab AG (Munich, Germany). B. Meyer received fees, consulting fees, and research grants from Medtronic (Meerbusch, Germany), Icotec ag (Altstätten, Switzerland), and Relievant Medsystems (Sunnyvale, CA, USA), fees and research grants from Ulrich Medical (Ulm, Germany), fees and consulting fees from Spineart Deutschland GmbH (Frankfurt, Germany) and DePuy Synthes (West Chester, PA, USA), and royalties from Spineart Deutschland GmbH (Frankfurt, Germany). N. Sollmann, H. Zhang, S. Schramm, S. Ille, C. Negwer, K. Kreiser, B. Meyer and S.M. Krieg declare that they have no conflict of interest regarding the materials used or the results presented in this study.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34:51–61.CrossRefGoogle Scholar
  2. 2.
    Potgieser AR, Wagemakers M, van Hulzen AL, de Jong BM, Hoving EW, Groen RJ. The role of diffusion tensor imaging in brain tumor surgery: a review of the literature. Clin Neurol Neurosurg. 2014;124:51–8.CrossRefGoogle Scholar
  3. 3.
    Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259–67.CrossRefGoogle Scholar
  4. 4.
    Vassal F, Schneider F, Sontheimer A, Lemaire JJ, Nuti C. Intraoperative visualisation of language fascicles by diffusion tensor imaging-based tractography in glioma surgery. Acta Neurochir (Wien). 2013;155:437–48.CrossRefGoogle Scholar
  5. 5.
    Kuhnt D, Bauer MH, Becker A, Merhof D, Zolal A, Richter M, Grummich P, Ganslandt O, Buchfelder M, Nimsky C. Intraoperative visualization of fiber tracking based reconstruction of language pathways in glioma surgery. Neurosurgery. 2012;70:911–9.CrossRefGoogle Scholar
  6. 6.
    Henning Stieglitz L, Seidel K, Wiest R, Beck J, Raabe A. Localization of primary language areas by arcuate fascicle fiber tracking. Neurosurgery. 2012;70:56–64.CrossRefGoogle Scholar
  7. 7.
    Richter M, Zolal A, Ganslandt O, Buchfelder M, Nimsky C, Merhof D. Evaluation of diffusion-tensor imaging-based global search and tractography for tumor surgery close to the language system. PLoS ONE. 2013;8:e50132.CrossRefGoogle Scholar
  8. 8.
    Schonberg T, Pianka P, Hendler T, Pasternak O, Assaf Y. Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage. 2006;30:1100–11.CrossRefGoogle Scholar
  9. 9.
    Sollmann N, Negwer C, Ille S, Maurer S, Hauck T, Kirschke JS, Ringel F, Meyer B, Krieg SM. Feasibility of nTMS-based DTI fiber tracking of language pathways in neurosurgical patients using a fractional anisotropy threshold. J Neurosci Methods. 2016;267:45–54.CrossRefGoogle Scholar
  10. 10.
    Negwer C, Ille S, Hauck T, Sollmann N, Maurer S, Kirschke JS, Ringel F, Meyer B, Krieg SM. Visualization of subcortical language pathways by diffusion tensor imaging fiber tracking based on rTMS language mapping. Brain Imaging Behav. 2017;11:899-914.CrossRefGoogle Scholar
  11. 11.
    Negwer C, Sollmann N, Ille S, Hauck T, Maurer S, Kirschke JS, Ringel F, Meyer B, Krieg SM. Language pathway tracking: comparing nTMS-based DTI fiber tracking with a cubic ROIs-based protocol. J Neurosurg. 2017;126:1006–14.CrossRefGoogle Scholar
  12. 12.
    Raffa G, Bährend I, Schneider H, Faust K, Germanò A, Vajkoczy P, Picht T. A novel technique for region and linguistic specific nTMS-based DTI fiber tracking of language pathways in brain tumor patients. Front Neurosci. 2016;10:552.CrossRefGoogle Scholar
  13. 13.
    Raffa G, Conti A, Scibilia A, Sindorio C, Quattropani MC, Visocchi M, Germanò A, Tomasello F. Functional reconstruction of motor and language pathways based on navigated transcranial magnetic stimulation and DTI fiber tracking for the preoperative planning of low grade glioma surgery: a new tool for preservation and restoration of eloquent networks. Acta Neurochir Suppl. 2017;124:251–61.CrossRefGoogle Scholar
  14. 14.
    Negwer C, Beurskens E, Sollmann N, Maurer S, Ille S, Giglhuber K, Kirschke JS, Ringel F, Meyer B, Krieg SM. Loss of subcortical language pathways correlates with surgery-related aphasia in patients with brain tumor: an investigation via repetitive navigated transcranial magnetic stimulation-based diffusion tensor imaging fiber tracking. World Neurosurg. 2018;111:e806–18.CrossRefGoogle Scholar
  15. 15.
    Lioumis P, Zhdanov A, Mäkelä N, Lehtinen H, Wilenius J, Neuvonen T, Hannula H, Deletis V, Picht T, Mäkelä JP. A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. J Neurosci Methods. 2012;204:349–54.CrossRefGoogle Scholar
  16. 16.
    Krieg SM, Lioumis P, Mäkelä JP, Wilenius J, Karhu J, Hannula H, Savolainen P, Lucas CW, Seidel K, Laakso A, Islam M, Vaalto S, Lehtinen H, Vitikainen AM, Tarapore PE, Picht T. Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report. Acta Neurochir (Wien). 2017;159:1187–95.CrossRefGoogle Scholar
  17. 17.
    Picht T, Krieg SM, Sollmann N, Rösler J, Niraula B, Neuvonen T, Savolainen P, Lioumis P, Mäkelä JP, Deletis V, Meyer B, Vajkoczy P, Ringel F. A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery. 2013;72:808–19.CrossRefGoogle Scholar
  18. 18.
    Huber W, Poeck K, Willmes K. The Aachen aphasia test. Adv Neurol. 1984;42:291–303.Google Scholar
  19. 19.
    Sollmann N, Ille S, Hauck T, Maurer S, Negwer C, Zimmer C, Ringel F, Meyer B, Krieg SM. The impact of preoperative language mapping by repetitive navigated transcranial magnetic stimulation on the clinical course of brain tumor patients. BMC Cancer. 2015;15:261.CrossRefGoogle Scholar
  20. 20.
    Kelm A, Sollmann N, Ille S, Meyer B, Ringel F, Krieg SM. Resection of gliomas with and without neuropsychological support during awake craniotomy-effects on surgery and clinical outcome. Front Oncol. 2017;7:176.CrossRefGoogle Scholar
  21. 21.
    Sollmann N, Kelm A, Ille S, Schröder A, Zimmer C, Ringel F, Meyer B, Krieg SM. Setup presentation and clinical outcome analysis of treating highly language-eloquent gliomas via preoperative navigated transcranial magnetic stimulation and tractography. Neurosurg Focus. 2018;44:E2.CrossRefGoogle Scholar
  22. 22.
    Krieg SM, Sollmann N, Obermueller T, Sabih J, Bulubas L, Negwer C, Moser T, Droese D, Boeckh-Behrens T, Ringel F, Meyer B. Changing the clinical course of glioma patients by preoperative motor mapping with navigated transcranial magnetic brain stimulation. BMC Cancer. 2015;15:231.CrossRefGoogle Scholar
  23. 23.
    Krieg SM, Sabih J, Bulubasova L, Obermueller T, Negwer C, Janssen I, Shiban E, Meyer B, Ringel F. Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neuro Oncol. 2014;16:1274-82.CrossRefGoogle Scholar
  24. 24.
    Sollmann N, Wildschuetz N, Kelm A, Conway N, Moser T, Bulubas L, Kirschke JS, Meyer B, Krieg SM. Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach. J Neurosurg. 2018;128:800–10.CrossRefGoogle Scholar
  25. 25.
    Corina DP, Loudermilk BC, Detwiler L, Martin RF, Brinkley JF, Ojemann G. Analysis of naming errors during cortical stimulation mapping: implications for models of language representation. Brain Lang. 2010;115:101–12.CrossRefGoogle Scholar
  26. 26.
    Hernandez-Pavon JC, Mäkelä N, Lehtinen H, Lioumis P, Mäkelä JP. Effects of navigated TMS on object and action naming. Front Hum Neurosci. 2014;8:660.CrossRefGoogle Scholar
  27. 27.
    Frey D, Strack V, Wiener E, Jussen D, Vajkoczy P, Picht T. A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values. Neuroimage. 2012;62:1600–9.CrossRefGoogle Scholar
  28. 28.
    Axer H, Klingner CM, Prescher A. Fiber anatomy of dorsal and ventral language streams. Brain Lang. 2013;127:192–204.CrossRefGoogle Scholar
  29. 29.
    Gierhan SM. Connections for auditory language in the human brain. Brain Lang. 2013;127:205–21.CrossRefGoogle Scholar
  30. 30.
    Catani M, Thiebaut de Schotten M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex. 2008;44:1105–32.CrossRefGoogle Scholar
  31. 31.
    Chang EF, Raygor KP, Berger MS. Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg. 2015;122:250–61.CrossRefGoogle Scholar
  32. 32.
    Duffau H, Capelle L, Sichez N, Denvil D, Lopes M, Sichez JP, Bitar A, Fohanno D. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain. 2002;125(Pt 1):199–214.CrossRefGoogle Scholar
  33. 33.
    Leclercq D, Duffau H, Delmaire C, Capelle L, Gatignol P, Ducros M, Chiras J, Lehéricy S. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg. 2010;112:503–11.CrossRefGoogle Scholar
  34. 34.
    Maldonado IL, Moritz-Gasser S, de Champfleur NM, Bertram L, Moulinié G, Duffau H. Surgery for gliomas involving the left inferior parietal lobule: new insights into the functional anatomy provided by stimulation mapping in awake patients. J Neurosurg. 2011;115:770–9.CrossRefGoogle Scholar
  35. 35.
    Krieg SM, Sollmann N, Tanigawa N, Foerschler A, Meyer B, Ringel F. Cortical distribution of speech and language errors investigated by visual object naming and navigated transcranial magnetic stimulation. Brain Struct Funct. 2016;221:2259–86.CrossRefGoogle Scholar
  36. 36.
    Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011;134(Pt 10):3011–29.CrossRefGoogle Scholar
  37. 37.
    Duffau H, Gatignol P, Moritz-Gasser S, Mandonnet E. Is the left uncinate fasciculus essential for language? A cerebral stimulation study. J Neurol. 2009;256:382–9.CrossRefGoogle Scholar
  38. 38.
    Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain. 2005;128(Pt 4):797–810.CrossRefGoogle Scholar
  39. 39.
    Sollmann N, Tanigawa N, Tussis L, Hauck T, Ille S, Maurer S, Negwer C, Zimmer C, Ringel F, Meyer B, Krieg SM. Cortical regions involved in semantic processing investigated by repetitive navigated transcranial magnetic stimulation and object naming. Neuropsychologia. 2015;70:185–95.CrossRefGoogle Scholar
  40. 40.
    Mandonnet E, Nouet A, Gatignol P, Capelle L, Duffau H. Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain. 2007;130(Pt 3):623–9.CrossRefGoogle Scholar
  41. 41.
    Herbet G, Moritz-Gasser S, Lemaitre AL, Almairac F, Duffau H. Functional compensation of the left inferior longitudinal fasciculus for picture naming.Cogn Neuropsychol. 2018 Jun 7:1-18. doi: 10.1080/02643294.2018.1477749. [Epub ahead of print]CrossRefGoogle Scholar
  42. 42.
    Epstein CM, Meador KJ, Loring DW, Wright RJ, Weissman JD, Sheppard S, Lah JJ, Puhalovich F, Gaitan L, Davey KR. Localization and characterization of speech arrest during transcranial magnetic stimulation. Neurophysiol Clin. 1999;110:1073–9.CrossRefGoogle Scholar
  43. 43.
    Pascual-Leone A, Gates JR, Dhuna A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology. 1991;41:697–702.CrossRefGoogle Scholar
  44. 44.
    Sollmann N, Hauck T, Hapfelmeier A, Meyer B, Ringel F, Krieg SM. Intra- and interobserver variability of language mapping by navigated transcranial magnetic brain stimulation. BMC Neurosci. 2013;14:150.CrossRefGoogle Scholar
  45. 45.
    Duffau H, Moritz-Gasser S, Gatignol P. Functional outcome after language mapping for insular World Health Organization grade II gliomas in the dominant hemisphere: experience with 24 patients. Neurosurg Focus. 2009;27:E7.CrossRefGoogle Scholar
  46. 46.
    Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008;358:18–27.CrossRefGoogle Scholar
  47. 47.
    Wilson SM, Lam D, Babiak MC, Perry DW, Shih T, Hess CP, Berger MS, Chang EF. Transient aphasias after left hemisphere resective surgery. J Neurosurg. 2015;123:581–93.CrossRefGoogle Scholar
  48. 48.
    Chang SM, Parney IF, McDermott M, Barker FG 2nd, Schmidt MH, Huang W, Laws ER Jr, Lillehei KO, Bernstein M, Brem H, Sloan AE, Berger M; Glioma Outcomes Investigators. Perioperative complications and neurological outcomes of first and second craniotomies among patients enrolled in the Glioma Outcome Project. J Neurosurg. 2003;98:1175–81.CrossRefGoogle Scholar
  49. 49.
    Taylor MD, Bernstein M. Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. J Neurosurg. 1999;90:35–41.CrossRefGoogle Scholar
  50. 50.
    Brell M, Ibáñez J, Caral L, Ferrer E. Factors influencing surgical complications of intra-axial brain tumours. Acta Neurochir (Wien). 2000;142:739–50.CrossRefGoogle Scholar
  51. 51.
    Sawaya R, Hammoud M, Schoppa D, Hess KR, Wu SZ, Shi WM, Wildrick DM. Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. Neurosurgery. 1998;42:1044–55. discussion 55–6.CrossRefGoogle Scholar
  52. 52.
    Berman JI, Berger MS, Chung SW, Nagarajan SS, Henry RG. Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg. 2007;107:488–94.CrossRefGoogle Scholar
  53. 53.
    Duffau H. Diffusion tensor imaging is a research and educational tool, but not yet a clinical tool. World Neurosurg. 2014;82:e43–5.CrossRefGoogle Scholar
  54. 54.
    Yeh FC, Tseng WY. NTU-90: a high angular resolution brain atlas constructed by q‑space diffeomorphic reconstruction. Neuroimage. 2011;58:91–9.CrossRefGoogle Scholar
  55. 55.
    Hori M, Fukunaga I, Masutani Y, Taoka T, Kamagata K, Suzuki Y, Aoki S. Visualizing non-Gaussian diffusion: clinical application of q‑space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci. 2012;11:221–33.CrossRefGoogle Scholar
  56. 56.
    Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48:577–82.CrossRefGoogle Scholar
  57. 57.
    Kuhnt D, Bauer MH, Egger J, Richter M, Kapur T, Sommer J, Merhof D, Nimsky C. Fiber tractography based on diffusion tensor imaging compared with high-angular-resolution diffusion imaging with compressed sensing: initial experience. Neurosurgery. 2013;72 Suppl 1:165-75.CrossRefGoogle Scholar
  58. 58.
    Li Z, Peck KK, Brennan NP, Jenabi M, Hsu M, Zhang Z, Holodny AI, Young RJ. Diffusion tensor tractography of the arcuate fasciculus in patients with brain tumors: comparison between deterministic and probabilistic models. J Biomed Sci Eng. 2013;6:192–200.CrossRefGoogle Scholar
  59. 59.
    Krieg SM, Tarapore PE, Picht T, Tanigawa N, Houde J, Sollmann N, Meyer B, Vajkoczy P, Berger MS, Ringel F, Nagarajan S. Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. Neuroimage. 2014;100:219–36.CrossRefGoogle Scholar
  60. 60.
    Sollmann N, Giglhuber K, Tussis L, Meyer B, Ringel F, Krieg SM. nTMS-based DTI fiber tracking for language pathways correlates with language function and aphasia—a case report. Clin Neurol Neurosurg. 2015;136:25–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nico Sollmann
    • 1
    • 2
    • 3
  • Haosu Zhang
    • 2
  • Severin Schramm
    • 2
  • Sebastian Ille
    • 2
    • 3
  • Chiara Negwer
    • 2
  • Kornelia Kreiser
    • 1
  • Bernhard Meyer
    • 2
  • Sandro M. Krieg
    • 2
    • 3
  1. 1.Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  2. 2.Department of Neurosurgery, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  3. 3.TUM-Neuroimaging Center, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany

Personalised recommendations