Clinical Neuroradiology

, Volume 29, Issue 2, pp 321–329 | Cite as

Reversible Dilation of Cerebral Macrovascular Changes in MELAS Episodes

  • Yuxin LiEmail author
  • Weixingzi Xu
  • Chong Sun
  • Jie Lin
  • Jianxun Qu
  • Jiawen Cao
  • Haiqing Li
  • Liqin Yang
Original Article



To investigate the cerebral macrovascular changes as well as the relationship of large vessels and cerebral blood flow (CBF) in mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) using magnetic resonance angiography (MRA) and arterial spin labeling (ASL) perfusion MR imaging (MRI).


A total of 20 patients diagnosed with MELAS (12 males, 8 females; mean age, 23.3 years) underwent conventional MRI, time-of-flight (TOF) MRA and three dimensional ASL. Follow-up scans were performed in 10 patients. The changes of cerebral arteries and branches on MRA images from both acute and recovery patients were independently evaluated by two radiologists. Lesion distribution and CBF were observed on the integrated maps of MRA and ASL.


In 14 patients with clinical onsets, increased CBF was observed in all stroke-like lesions. Dilations of a single artery (four middle cerebral arteries, two posterior cerebral arteries) were found in six patients. Dilations of multiple arteries (two anterior cerebral arteries, seven middle cerebral arteries, six posterior cerebral arteries) were found in seven patients. Normal angiography was shown in one acute patient. Cortical terminal branches feeding the lesion areas were more obviously dilated than the main trunks. The dilated vessels returned to normal on follow-up scans concurrently with decreased CBF in nine patients who were resuscitated from episode attacks. Vasodilation was even seen in one preclinical patient who suffered a recurrent episode 50 days later.


Reversible dilation of cerebral macrovascular changes could be a new feature of MELAS and a presumed reason for fluctuant CBF. It would shed new light on the mitochondrial angiopathy.


MELAS Cerebral arteries MRI angiography Cerebral blood flow 



We would like to thank all patients who participated in this study. We also acknowledge the grants from the National Natural Science Foundation of China (No. 81301203, 81401035) which supported this study.

Compliance with ethical guidelines

Conflict of interest

Y. Li, W. Xu, C. Sun, J. Lin, J. Qu, J. Cao, H. Li and L. Yang declare that they have no competing interests.

Ethical standards

All investigations performed on humans in this study were carried out in accordance with national law and the Helsinki Declaration from 1964 (in its current revised form). This study was approved by the ethics committee of our hospital. Informed consent was obtained from each patient.

Supplementary material

62_2018_662_MOESM1_ESM.pdf (220 kb)
ESM-Fig. 1 MRA images (inferior-superior view) of each patient with MELAS at the initial MR scans; Fig. 2 MRA images (inferior-superior view) of ten patients with MELAS at the follow-up MR scans


  1. 1.
    Yatsuga S, Povalko N, Nishioka J, Katayama K, Kakimoto N, Matsuishi T, Kakuma T, Koga Y; Taro Matsuoka for MELAS Study Group in Japan. MELAS: a nationwide prospective cohort study of 96 patients in Japan. Biochim Biophys Acta. 2012;1820:619-24.Google Scholar
  2. 2.
    El-Hattab AW, Adesina AM, Jones J, Scaglia F. MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab. 2015;116:4-12.Google Scholar
  3. 3.
    Tzoulis C, Bindoff LA. Acute mitochondrial encephalopathy reflects neuronal energy failure irrespective of which genome the genetic defect affects. Brain. 2012;135(Pt 12):3627–34.Google Scholar
  4. 4.
    Ito H, Mori K, Harada M, Minato M, Naito E, Takeuchi M, Kuroda Y, Kagami S. Serial brain imaging analysis of stroke-like episodes in MELAS. Brain Dev. 2008;30:483-8.Google Scholar
  5. 5.
    Li R, Xiao HF, Lyu JH, Wang D JJ, Ma L, Lou X. Differential diagnosis of mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) and ischemic stroke using 3D pseudocontinuous arterial spin labeling. J Magn Reson Imaging. 2017;45:199-206.Google Scholar
  6. 6.
    Bersano A, Markus HS, Quaglini S, Arbustini E, Lanfranconi S, Micieli G, Boncoraglio GB, Taroni F, Gellera C, Baratta S, Penco S, Mosca L, Grasso M, Carrera P, Ferrari M, Cereda C, Grieco G, Corti S, Ronchi D, Bassi MT, Obici L, Parati EA, Pezzini A, De Lodovici ML, Verrengia EP, Bono G, Mazucchelli F, Zarcone D, Calloni MV, Perrone P, Bordo BM, Colombo A, Padovani A, Cavallini A, Beretta S, Ferrarese C, Motto C, Agostoni E, Molini G, Sasanelli F, Corato M, Marcheselli S, Sessa M, Comi G, Checcarelli N, Guidotti M, Uccellini D, Capitani E, Tancredi L, Arnaboldi M, Incorvaia B, Tadeo CS, Fusi L, Grampa G, Merlini G, Trobia N, Comi GP, Braga M, Vitali P, Baron P, Grond-Ginsbach C, Candelise L; Lombardia GENS Group*. Clinical pregenetic screening for stroke monogenic diseases: results from lLombardia GENS Registry. Stroke. 2016;47:1702-9.Google Scholar
  7. 7.
    Tatlisumak T, Putaala J, Innilä M, Enzinger C, Metso TM, Curtze S, von Sarnowski B, Amaral-Silva A, Jungehulsing GJ, Tanislav C, Thijs V, Rolfs A, Norrving B, Fazekas F, Suomalainen A, Kolodny EH. Frequency of MELAS main mutation in a phenotype-targeted young ischemic stroke patient population. J Neurol. 2016;263:257-62.Google Scholar
  8. 8.
    Koopman WJ, Willems PH, Smeitink JA. Monogenic mitochondrial disorders. N Engl J Med. 2012;366:1132-41.Google Scholar
  9. 9.
    Sarnat HB, Flores-Sarnat L, Casey R, Scott P, Khan A. Endothelial ultrastructural alterations of intramuscular capillaries in infantile mitochondrial cytopathies: “mitochondrial angiopathy”. Neuropathology. 2012;32:617-27.Google Scholar
  10. 10.
    Lax NZ, Pienaar IS, Reeve AK, Hepplewhite PD, Jaros E, Taylor RW, Kalaria RN, Turnbull DM. Microangiopathy in the cerebellum of patients with mitochondrial DNA disease. Brain. 2012;135(Pt 6):1736-50.Google Scholar
  11. 11.
    Kim JH, Lim MK, Jeon TY, Rha JH, Eo H, Yoo SY, Shu CH. Diffusion and perfusion characteristics of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode) in thirteen patients. Korean J Radiol. 2011;12:15-24.Google Scholar
  12. 12.
    Rodan LH, Poublanc J, Fisher JA, Sobczyk O, Wong T, Hlasny E, Mikulis D, Tein I. Cerebral hyperperfusion and decreased cerebrovascular reactivity correlate with neurologic disease severity in MELAS. Mitochondrion. 2015;22:66–74.Google Scholar
  13. 13.
    Yoshida T, Ouchi A, Miura D, Shimoji K, Kinjo K, Sueyoshi T, Jonosono M, Rajput V. MELAS and reversible vasoconstriction of the major cerebral arteries. Intern Med. 2013;52:1389-92.Google Scholar
  14. 14.
    Noguchi A, Shoji Y, Matsumori M, Komatsu K, Takada G. Stroke-like episode involving a cerebral artery in a patient with MELAS. Pediatr Neurol. 2005;33:70-1.Google Scholar
  15. 15.
    Minobe S, Matsuda A, Mitsuhashi T, Ishikawa M, Nishimura Y, Shibata K, Ito E, Goto Y, Nakaoka T, Sakura H. Vasodilatation of multiple cerebral arteries in early stage of stroke-like episode with MELAS. J Clin Neurosci. 2015;22:407-8.Google Scholar
  16. 16.
    Ikawa M, Yoneda M, Muramatsu T, Matsunaga A, Tsujikawa T, Yamamoto T, Kosaka N, Kinoshita K, Yamamura O, Hamano T, Nakamoto Y, Kimura H. Detection of preclinically latent hyperperfusion due to stroke-like episodes by arterial spin-labeling perfusion MRI in MELAS patients. Mitochondrion. 2013;13:676-80.Google Scholar
  17. 17.
    Finsterer J, Zarrouk-Mahjoub S. Macroangiopathy is a typical phenotypic manifestation of MELAS. Metab Brain Dis. 2017;32:977-9.Google Scholar
  18. 18.
    Finsterer J, Zarrouk-Mahjoub S. Mitochondrial vasculopathy. World J Cardiol. 2016;8:333-9.Google Scholar
  19. 19.
    Iizuka T, Sakai F, Suzuki N, Hata T, Tsukahara S, Fukuda M, Takiyama Y. Neuronal hyperexcitability in stroke-like episodes of melas syndrome. Neurology. 2002;59:816-24.Google Scholar
  20. 20.
    Yoneda M, Ikawa M, Arakawa K, Kudo T, Kimura H, Fujibayashi Y, Okazawa H. In vivo functional brain imaging and a therapeutic trial of L‑arginine in MELAS patients. Biochim Biophys Acta. 2012;1820:615-8.Google Scholar
  21. 21.
    Tay SH, Nordli DR Jr, Bonilla E, Null E, Monaco S, Hirano M, DiMauro S. Aortic rupture in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes. Arch Neurol. 2006;63:281-3.Google Scholar
  22. 22.
    Iizuka T, Goto Y, Miyakawa S, Sato M, Wang Z, Suzuki K, Hamada J, Kurata A, Sakai F. Progressive carotid artery stenosis with a novel tRNA phenylalanine mitochondrial DNA mutation. J Neurol Sci. 2009;278:35-40.Google Scholar
  23. 23.
    Mancuso M, Montano V, Orsucci D, Peverelli L, Caputi L, Gambaro P, Siciliano G, Lamperti C. Mitochondrial vasculopathy due to the m.3243A > G mutation is not restricted to the carotid artery. Mol Genet Metab Rep. 2016;9:12-4.Google Scholar
  24. 24.
    Finsterer JBA. Dilative arteriopathy and leucencephalopathy as manifestations of a neurometabolic disease. Open Neurol J. 2015;26:28-31.Google Scholar
  25. 25.
    Zhu K, Li S, Chen H, Wang Y, Yu M, Wang H, Zhao W, Cao Y. Late onset MELAS with m.3243A > G mutation and its association with aneurysm formation. Metab Brain Dis. 2017;32:1069-72.Google Scholar
  26. 26.
    Bizeau A, Gilbert G, Bernier M, Huynh MT, Bocti C, Descoteaux M, Whittingstall K. Stimulus-evoked changes in cerebral vessel diameter: a study in healthy humans. J Cereb Blood Flow Metab. 2017 Jan 1 [Epub ahead of print]Google Scholar
  27. 27.
    Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res. 1990;66:8-17.Google Scholar
  28. 28.
    Muñoz MF, Puebla M, Figueroa XF. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca(2+) signaling. Front Cell Neurosci. 2015;9:59.Google Scholar
  29. 29.
    Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017;18:419-34.Google Scholar
  30. 30.
    Gropen TI, Prohovnik I, Tatemichi TK, Hirano M. Cerebral hyperemia in MELAS. Stroke. 1994;25(9):1873–6.Google Scholar
  31. 31.
    Li Y, Lin J, Sun C, Zhao C, Li H. Increased cerebral blood flow as a predictor of episodes in MELAS using multimodal MRI. J Magn Reson Imaging. 2017;46:915–8.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
  2. 2.Institute of Functional and Molecular Medical ImagingFudan UniversityShanghaiChina
  3. 3.Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
  4. 4.Advanced ApplicationGE HealthcareShanghaiChina

Personalised recommendations