Clinical Neuroradiology

, Volume 25, Supplement 2, pp 225–230 | Cite as

Quantitative Susceptibility Mapping: Concepts and Applications

  • J. R. ReichenbachEmail author
  • F. Schweser
  • B. Serres
  • A. Deistung
Review Article



To review the fundamental principles of susceptibility-weighted imaging (SWI) and quantitative susceptibility mapping (QSM), and to discuss recent clinical developments.


SWI is a magnetic resonance imaging method that takes advantage of magnitude signal loss and phase information to reveal anatomic and physiologic information about tissue and venous vasculature. The method enhances image contrast qualitatively, relying on phase shifts due to differences in magnetic susceptibility between tissues. QSM, extending SWI in an elegant way, is a new sophisticated postprocessing technique that numerically solves the inverse source-effect problem to derive local tissue magnetic susceptibility (source) from the measured magnetic field distribution (effect) as it is reflected in the phase images of gradient-echo sequences.


SWI has meanwhile been established in numerous clinical as well as basic biomedical applications due to its ability to highlight tissue structures and compounds that are difficult to detect by conventional magnetic resonance imaging (MRI), including iron, calcifications, small veins, blood, and bones. The field of QSM has also progressed rapidly, both in terms of optimizing the post-processing strategies and algorithms as well as in gaining ground for new clinical applications that take advantage of its quantitative nature and improved specificity to identify the magnetic signature of lesions.


Though magnetic susceptibility may be a major nuisance producing image artifacts in MRI, recent work has transformed it into a useful source of image contrast. Both SWI and QSM are gaining increasing acceptance in clinical practice. In particular, QSM provides new insights into tissue composition and organization due to its more direct relation to the actual physical tissue magnetic properties.


Magnetic resonance imaging Magnetic susceptibility Susceptibility-weighted imaging Quantitative susceptibility mapping 


  1. 1.
    Reichenbach JR, Venkatesan R, Schillinger DJ, Kido D, Haacke EM. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology. 1997;204(1):272–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52(3):612–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Deistung A, Rauscher A, Sedlacik J, Stadler J, Witoszynskyj S, Reichenbach JR. Susceptibility weighted imaging at ultrahigh magnetic field strengths: theoretical considerations and experimental results. Magn Reson Med. 2008;60(5):1155–68.CrossRefPubMedGoogle Scholar
  4. 4.
    Haacke EM, Reichenbach JR, editors. Susceptibility weighted imaging in MRI: basic concepts and clinical applications. 1st ed. Hoboken: Wiley-Blackwell; 2011. 776 pp.Google Scholar
  5. 5.
    Reichenbach JR. The future of susceptibility contrast for assessment of anatomy and function. Neuroimage. 2012;62(2):1311–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Liu C, Li W, Tong KA, Yeom KW, Kuzminski S. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging. 2015;42(1):23–41.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Li L, Leigh JS. Quantifying arbitrary magnetic susceptibility distributions with MR. Magn Reson Med. 2004;51(5):1077–82.CrossRefPubMedGoogle Scholar
  8. 8.
    Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med. 2009;61(1):196–204.CrossRefPubMedGoogle Scholar
  9. 9.
    Haacke EM, Tang J, Neelavalli J, Cheng YC. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging. 2010;32(3):663–76. (Erratum in: J Magn Reson Imaging. 2011;33(6):1527–9.)PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Wharton S, Bowtell R. Whole-brain susceptibility mapping at high field: a comparison of multiple- and single-orientation methods. Neuroimage. 2010;53(2):515–25.CrossRefPubMedGoogle Scholar
  11. 11.
    Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage. 2011;55(4):1645–56.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Schweser F, Deistung A, Lehr BW, Reichenbach JR. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage. 2011;54(4):2789–807.CrossRefPubMedGoogle Scholar
  13. 13.
    Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015;33(1):1–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang Y, Liu T. Quantitative Susceptibility Mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 2015;73(1):82–101.CrossRefGoogle Scholar
  15. 15.
    Deistung A, Schweser F, Wiestler B, Abello M, Roethke M, Sahm F, Wick W, Nagel AM, Heiland S, Schlemmer HP, Bendszus M, Reichenbach JR, Radbruch A. Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One. 2013;8(3):e57924.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Langkammer C, Liu T, Khalil M, Enzinger C, Jehna M, Fuchs S, Fazekas F, Wang Y, Ropele S. Quantitative susceptibility mapping in multiple sclerosis. Radiology. 2013;267(2):551–9.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Tan H, Liu T, Wu Y, Thacker J, Shenkar R, Mikati AG, Shi C, Dykstra C, Wang Y, Prasad PV, Edelman RR, Awad IA. Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping. Invest Radiol. 2014;49(7):498–504.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Blazejewska AI, Al-Radaideh AM, Wharton S, Lim SY, Bowtell RW, Constantinescu CS, Gowland PA. Increase in the iron content of the substantia nigra and red nucleus in multiple sclerosis and clinically isolated syndrome: a 7 T MRI study. J Magn Reson Imaging. 2015;41(4):1065–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Barbosa JH, Santos AC, Tumas V, Liu M, Zheng W, Haacke EM, Salmon CE. Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2*. Magn Reson Imaging. 2015;33(5):559–65.CrossRefPubMedGoogle Scholar
  20. 20.
    Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815–50.CrossRefPubMedGoogle Scholar
  21. 21.
    Li W, Wang N, Yu F, Han H, Cao W, Romero R, Tantiwongkosi B, Duong TQ, Liu C. A method for estimating and removing streaking artifacts in quantitative susceptibility mapping. Neuroimage. 2015;108:111–22.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Langkammer C, Bredies K, Poser BA, Barth M, Reishofer G, Fan AP, Bilgic B, Fazekas F, Mainero C, Ropele S. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. Neuroimage. 2015;111:622–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Wen Y, Wang Y, Liu T. Enhancing k-space quantitative susceptibility mapping by enforcing consistency on the cone data (CCD) with structural priors. Magn Reson Med. 2015. [Epub ahead of print].Google Scholar
  24. 24.
    Schweser F, Deistung A, Lehr BW, Reichenbach JR. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys. 2010;37(10):5165–78.CrossRefPubMedGoogle Scholar
  25. 25.
    Fan AP, Bilgic B, Gagnon L, Witzel T, Bhat H, Rosen BR, Adalsteinsson E. Quantitative oxygenation venography from MRI phase. Magn Reson Med. 2014;72(1):149–59.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Liu J, Xia S, Hanks RA, Wiseman NM, Peng C, Zhou S, Haacke EM, Kou Z. Susceptibility weighted imaging and mapping of micro-hemorrhages and major deep veins after traumatic brain injury. J Neurotrauma. 2015. [Epub ahead of print].Google Scholar
  27. 27.
    Li W, Long J, Watts LT, Shen Q, Duong TQ. Altered magnetic susceptibility in white matter after mild traumatic brain injury. Proc Intl Soc Mag Reson Med. 2014;22:900.Google Scholar
  28. 28.
    Sehgal V, Delproposto Z, Haddar D, Haacke EM, Sloan AE, Zamorano LJ, Barger G, Hu J, Xu Y, Prabhakaran KP, Elangovan IR, Neelavalli J, Reichenbach JR. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging. 2006;24(1):41–51.CrossRefPubMedGoogle Scholar
  29. 29.
    Shmueli K, de Zwart JA, van Gelderen P, Li TQ, Dodd SJ, Duyn JH. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med. 2009;62(6):1510–22.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Wharton S, Schäfer A, Bowtell R. Susceptibility mapping in the human brain using threshold-based k-space division. Magn Reson Med. 2010;63(5):1292–304.CrossRefPubMedGoogle Scholar
  31. 31.
    Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med. 2011;66(3):777–83.CrossRefPubMedGoogle Scholar
  32. 32.
    Schweser F, Sommer K, Deistung A, Reichenbach JR. Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain. Neuroimage. 2012;62(3):2083–100.CrossRefPubMedGoogle Scholar
  33. 33.
    de Rochefort L, Brown R, Prince MR, Wang Y. Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field. Magn Reson Med. 2008;60(4):1003–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Tang J, Liu S, Neelavalli J, Cheng YCN, Buch S, Haacke EM. Improving susceptibility mapping using a threshold-based k-space/image domain iterative reconstruction approach. Magn Reson Med. 2013;69(5):1396–407.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Plyavin YA, Blum EY. Magnetic parameters of blood cells and high-gradient paramagnetic and diamagnetic phoresis. Magnetohydrodynamics. 1983;19:349–59.Google Scholar
  36. 36.
    Hopkins JA, Wehrli FW. Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn Reson Med. 1997;37(4):494–500.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. R. Reichenbach
    • 1
    • 2
    Email author
  • F. Schweser
    • 3
    • 4
  • B. Serres
    • 1
  • A. Deistung
    • 1
  1. 1.Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital JenaFriedrich-Schiller UniversityJenaGermany
  2. 2.Michael Stifel Center for Data-driven and Simulation Science JenaFriedrich Schiller UniversityJenaGermany
  3. 3.Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloUSA
  4. 4.MRI Clinical and Translational Research Center, School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloUSA

Personalised recommendations