Clinical Neuroradiology

, Volume 25, Issue 3, pp 257–265

Determination of the Middle Cerebral Artery Occlusion Length in Acute Stroke: Contribution of 4D CT Angiography and Importance for Thrombolytic Efficacy Prediction

  • J. Baxa
  • V. Rohan
  • R. Tupy
  • L. Cerna
  • T. Flohr
  • J. Polivka
  • J. Ferda
Original Article



To assess the benefit of 4D-CT angiography (4D-CTA) in determination and precise measurement of middle cerebral artery (MCA) occlusion in comparison to CTA. Possible relationship of measured occlusion lengths with recanalization after intravenous thrombolysis was analysed as a second objective.


Detailed evaluation of complete MCA occlusions in 80 patients before intravenous thrombolysis using temporal maximum intensity projection (tMIP) dataset, calculated from 4D-CTA and conventional single-phase CTA was performed. Further, manual measurement technique was compared to results of semiautomatic procedure (vessel analysis) as reference. Statistical analysis of correlation between MCA occlusion length and IVT efficacy (24 h recanalization rate according modified Thrombolysis In Myocardial Infarction criteria—mTIMI) was performed.


The distal end of occlusion was identified in all patients using tMIP, but only in 48 patients (60 %) using CTA. The manual measurement method was not statistically different and well correlated with reference tMIP-vessel analysis. (15.4 vs. 16.3 mm; p = 0.434; r = 97). In measurable occlusions by CTA, no significant difference was proved in manually measured lengths using tMIP and CTA (14.5 vs. 13.3 mm; p = 0.089).

Favorable recanalization (mTIMI 2–3) was achieved in 37 patients (47 %). Length of occlusion in M1 segment (p = 0.002) and M2 segment involvement (p = 0.017) were proved as independent negative predictors of recanalization. Using receiver operating characteristics analysis, the cutoff length of the M1 segment occlusion for favorable recanalization was found to be 12 mm.


The feasibility of MCA occlusion assessment using tMIP datasets and benefit over conventional CTA were confirmed. The manual measurement method was proved as feasible and simple with good correlation to reference semiautomatic analysis. The significant correlation of the MCA occlusion length and early recanalization was found. The length of 12 mm was recognized as cut-off length for favorable recanalization.


4D-CT angiography Thrombolytic therapy Ischemic stroke Middle cerebral artery occlusion Early recanalization 


  1. 1.
    Kim YS, Garami Z, Mikulik R, Molina CA, Alexandrov AV. Early recanalization rates and clinical outcomes in patients with tandem internal carotid artery/middle cerebral artery occlusion and isolated middle cerebral artery occlusion. Stroke. 2005;36:869–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Schellinger PD, Fiebach JB, Hacke W. Imaging-based Decision making in Thrombolytic therapy for ischemic stroke. Stroke 2003;34:575–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Kirmani JF, Alkawi A, Panezai S, Gizzi M. Advances in thrombolytics for treatment of acute ischemic stroke. Neurology. 2012;79:S119–25.CrossRefPubMedGoogle Scholar
  4. 4.
    Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Eng J Med. 2013;368:893–903.CrossRefGoogle Scholar
  5. 5.
    Kirchhof K, Welzel T, Mecke T, Zoubaa S, Sartor K. Differentiation of white, mixed and red thrombi: value of CT in estimation of the prognosis of thrombolysis phantom study. Radiology. 2003; 228:126–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Barreto AD, Albright KC, Hallevi H, Grotta JC, Noser EA, Khaja AM, et al. Thrombus burden is associated with clinical outcome after intra-arterial therapy for acute ischemic stroke. Stroke. 2008;39:3231–5.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke. 2011;42:1775–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Riedel CH, Jensen U, Rohr A, Tietke M, Alfke K, Ulmer S, Jansen O. Assessment of thrombus in acute middle cerebral artery occlusion using thin-slice nonenhanced Computed Tomography reconstructions. Stroke. 2010;41:1659–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Konstas AA, Goldmakher GV, Lee TY, Lev MH. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, Part 1: theoretic basis. AJNR Am J Neuroradiol. 2009;30:662–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Morhard D, Wirth CD, Fesl G, Schmidt C, Reiser MF, Becker CR, Ertl-Wagner B. Advantages of extended brain perfusion computed tomography: 9.6 cm coverage with time resolved computed tomography-angiography in comparison to standard stroke-computed tomography. Invest Radiol. 2010;45:363–9.Google Scholar
  11. 11.
    Zaidat OO, Lazzaro MA, Liebeskind DS, Janjua N, Wechsler L, Nogueira RG, et al. Revascularization grading in endovascular acute ischemic stroke therapy. Neurology. 2012;79:110–6.CrossRefGoogle Scholar
  12. 12.
    Arnold M, Nedeltchev K, Remonda I, Fischer U, Brekenfeld C, Keserue B, Schroth G, Mattle HP. Recanalisation of middle cerebral artery occlusion after intra-arterial thrombolysis: different recanalisation grading systems and clinical functional outcome. J Neurol Neurosurg Psychiatry. 2005;76:1373–6.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Kim EY, Heo JH, Lee SK, Kim DJ, Suh SH, Kim J, Kim DI. Prediction of thrombolytic efficacy in acute ischemic stroke using thin-section noncontrast CT. Neurology. 2006;67:1846–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Kim EY, Lee SK, Kim DJ, Suh SH, Kim J, Heo JH, Kim DI. Detection of thrombus in acute ischemic stroke: value of thin-section noncontrast-computed tomography. Stroke. 2005;36:2745–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Pulli B, Yoo AJ. CT angiography source images with modern multisection CT scanners: delay time from contrast injection to imaging determines correlation with infarct core. AJNR Am J Neuroradiol. 2012;33:E61.CrossRefPubMedGoogle Scholar
  16. 16.
    Frölich AM, Schrader D, Klotz E, Schramm R, Wasser K, Knauth M. Schramm P. 4D CT Angiography More Closely Defines Intracranial Thrombus Burden Than Single-Phase CT Angiography. AJNR Am J Neuroradiol. 2013;34:1908–13. doi:10.3174/ajnr.A3533.CrossRefPubMedGoogle Scholar
  17. 17.
    Fröhlich AM, Psychogios MN, Klotz E, Schramm R, Knauth M, Schramm P. Angiographic reconstructions from whole-brain perfusion CT for the detection of large vessel occlusion in acute stroke. Stroke. 2012;43:97–102.CrossRefGoogle Scholar
  18. 18.
    Yang CY, Chen YF, Lee CW, Huang A, Shen Y, Wei C, Liu HM. Multiphase CT angiography versus single-phase CT angiography: comparison of image quality and radiation dose. AJNR Am J Neuroradiol. 2008;29:1288–95.CrossRefPubMedGoogle Scholar
  19. 19.
    Smith EJ, Vonken E, van der Schaaf IC, Mendrik AM, Dankbaar JW, Horsch AD, van Seeters T, van Ginneken B, Prokop M. Timing-invariant reconstruction for deriving high-quality CT angiographic data from cerebral CT perfusion data. Radiology. 2012;263:216–25.CrossRefGoogle Scholar
  20. 20.
    Frohlich AM, Psychogios MN, Klotz E, Schramm R, Knauth M, Schramm P. Antegrade flow across incomplete vessel occlusions can be distinguished from retrograde collateral flow using 4-dimensional computed tomographic angiography. Stroke. 2012;43:2974–9.CrossRefGoogle Scholar
  21. 21.
    Puetz V, Dzialowski I, Hill MD, Steffenhagen N, Coutts SB, O’Reilly C, Demchuk AM. Malignant profile detected by CT angiographic information predicts poor prognosis despite thrombolysis within three hours from symptom onset. Cerebrovasc Dis. 2010;29:584–91.CrossRefPubMedGoogle Scholar
  22. 22.
    Sillanpaa N, Saarinen JT, Rusanen H, Hakomaki J, Lahteela A, Numminen H, Elovaara I, Dastidar P, Soimakallio S. The clot burden score, the Boston Acute Stroke Imaging Scale, the cerebral blood volume ASPECTS, and two novel imaging parameters in the prediction of clinical outcome of ischemic stroke patients receiving intravenous thrombolytic therapy. Neuroradiology. 2012;54:663–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Puetz V, Dzialowski I, Hill MD, Subramaniam S, Sylaja PN, Krol A, et al. Intracranial thrombus extent predicts clinical outcome, final infarct size and hemorrhagic transformation in ischemic stroke: the clot burden score. Int J Stroke. 2008;3:230–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Tan IY, Demchuk AM, Hopyan J, Zhang L, Gladstone D, Wong K, et al. CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol. 2009;30:525–31.CrossRefPubMedGoogle Scholar
  25. 25.
    Gralla J, Burkhardt M, Schroth G, El-Koussy M, Reinert M, Nedeltchev K, Slotboom J, Brekenfeld C. Occlusion length is a crucial determinant of efficiency and complication rate in thrombectomy for acute ischemic stroke. AJNR Am J Neuroradiol. 2008;29:247–52.CrossRefPubMedGoogle Scholar
  26. 26.
    Spiotta AM, Vargas J, Hawk H, Turner R, Chaudry MI, Battenhouse H, Turk AS. Hounsfield unit value and clot length in the acutely occluded vessel and time required to achieve thrombectomy, complications and outcome. J Neurointerv Surg. 2013; doi:10.1136/neurintsurg-2013-010765.Google Scholar
  27. 27.
    Fugate JE, Klunder AM, Kallmes DF. What is meant by “TICI”? AJNR Am J Neuroradiol. 2013;34:1792–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. Baxa
    • 1
  • V. Rohan
    • 2
  • R. Tupy
    • 1
  • L. Cerna
    • 2
  • T. Flohr
    • 3
  • J. Polivka
    • 2
  • J. Ferda
    • 1
  1. 1.Department of Imaging MethodsUniversity Hospital and Charles University Medical School PilsenPilsenCzech Republic
  2. 2.Department of NeurologyUniversity Hospital and Charles University Medical School PilsenPilsenCzech Republic
  3. 3.CT Physics and Application DevelopmentSiemens HealthcareForchheimGermany

Personalised recommendations