Advertisement

Clinical Neuroradiology

, Volume 25, Issue 3, pp 233–239 | Cite as

Diagnostic Efficacy of Conventional MRI Pulse Sequences in the Detection of Lesions Causing Internuclear Ophthalmoplegia in Multiple Sclerosis Patients

  • J. P. McNulty
  • R. Lonergan
  • P. C. Brennan
  • M. G. Evanoff
  • R. O’Laoide
  • J. T. Ryan
  • N. Tubridy
Original Article

Abstract

Purpose

The purpose of this study was to investigate the diagnostic efficacy of a range of conventional magnetic resonance imaging (MRI) pulse sequences in the identification of internuclear ophthalmoplegia (INO) caused by medial longitudinal fasciculus (MLF) lesions in multiple sclerosis patients using a receiver-operating characteristic (ROC) methodology.

Methods

A total of 15 clinically confirmed INO and 15 control subjects underwent conventional MRI at 1.5 T consisting of T2-weighted, proton density (PD)-weighted, and fluid-attenuated inversion recovery (FLAIR) sequences, following full institutional approval. A free-response, multiple-reader multiple-case design ROC study was used to evaluate the diagnostic efficacy of each sequence. All imaging sequences were evaluated by 10 board-certified neuroradiologists. Area under the curve (AUC), sensitivity, and specificity were analysed statistically for all three pulse sequences using repeated-measures analyses of variance and post-test analysis using Bonferroni’s multiple comparison test of differences.

Results

No significant AUC differences were found between the three sequences (p = 0.0697), with T2 recording the highest AUC (0.8346). Sensitivity differences between PD (0.7927) and FLAIR (0.6329) were significant (p < 0.05). Non-significant differences were also evident between T2 and FLAIR (p = 0.0511). The specificity analysis revealed an overall difference (p = 0.0005), with specific inter-sequence differences shown between T2 and PD (p < 0.05) and PD and FLAIR (p < 0.001) with the PD values being lower than those provided with the other two sequences.

Conclusion

T2-weighted axial imaging through the MLF region resulted in the greatest overall diagnostic efficacy when viewing a combination of mean AUC, sensitivity, and specificity, in terms of the identification of INO-causing lesions.

Keywords

Magnetic resonance imaging Sequences Internuclear ophthalmoplegia Medial longitudinal fasciculus Multiple sclerosis 

Notes

Acknowledgements

We express our thanks and gratitude to the staff and examiners from the American Board of Radiology for their assistance and participation in this study. We would also like to thank Dr. Mark McEntee (University of Sydney) and Dr. Rachel Toomey (University College Dublin) for their help with data acquisition and data analysis.

Conflict of Interest

The authors have no conflict of interest related to the present study.

References

  1. 1.
    Matthews B. Symptoms and signs of multiple sclerosis. In: Compston A, Ebers G, Lassmann H, McDonald I, Matthews B, Wekerle H, editors. McAlpine’s multiple sclerosis. 3rd ed. London: Churchill Liveingstone; 1998. pp. 157–62.Google Scholar
  2. 2.
    Poser CM, Brinar VV. Diagnostic criteria for multiple sclerosis. Clin Neurol Neurosurg. 2001;103:1–11.CrossRefPubMedGoogle Scholar
  3. 3.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Frohman EM, Goodin DS, Calabresi PA, Corboy JR, Coyle PK, Filippi M, et al. The utility of MRI in suspected MS: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2003;61:602–11.CrossRefPubMedGoogle Scholar
  5. 5.
    Leigh RJ, Wolinsky JS. Keeping an eye on MS. Neurology. 2001;57:751–2.CrossRefPubMedGoogle Scholar
  6. 6.
    Comi G, Filippi M, Barkhof F, Durelli L, Edan G, Fernández O, et al. Effect of early interferon treatment on conversion to definite multiple sclerosis. Lancet. 2001;357:1576–82.CrossRefPubMedGoogle Scholar
  7. 7.
    Miller DH, Grossmann RI, Reingold SC, McFarland HF. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain. 1998;121:3–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Pelidou SH, Giannopoulos S, Tzavidid S, Lagos G, Kyritsis AP. Multiple sclerosis presented as clinically isolated syndrome: the need for early diagnosis and treatment. Ther Clin Risk Manag. 2008;4(3):627–30.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Frohman EM, Zhang H, Kramer PD, Fleckenstein J, Hawker K, Racke MK, et al. MRI characteristics of the MLF in MS patients with chronic internuclear ophthalmoparesis. Neurology. 2001;57:762–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Miller D, Barkhof F, Montalban X, Thompson A, Filippi M. Clinically isolated syndrome suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol. 2005;4:281–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Muri RM, Meienberg O. The clinical spectrum of internuclear ophthalmoplegia in multiple sclerosis. Arch Neurol. 1985;42:851–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Savino PJ. Neuro-ophthalmology. In: Tasman W, Jaeger EA, editors. The Wills Eye Hospital atlas of clinical ophthalmology. 1st ed. Philadelphia: Lippincott-Raven; 1996. pp. 310–1.Google Scholar
  13. 13.
    Lavin PJM, Donahue SP. Disorders of supranuclear control of ocular motility. In: Yanoff M, Duker JS, editors. Ophthalmology. 2nd ed. St. Louis: Mosby; 2004. p. 1310.Google Scholar
  14. 14.
    Atlas SW, Grossman RI, Savino PJ, Schatz NJ, Sergott RC, Bosley TM, et al. Internuclear ophthalmoplegia: MR-anatomic correlation. AJNR Am J Neuroradiol. 1987;8:243–7.PubMedGoogle Scholar
  15. 15.
    Barnes D, McDonald WI. The ocular manifestations of multiple sclerosis. 2. Abnormalities of eye movements. J Neurol Neurosurg Psychiatry. 1992;55(10):863–8.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Marx JJ, Thoemke F, Fitzek S, Vucurevic G, Fitzek C, Mika-Gruettner A, et al. A new method to investigate brain stem structural–functional correlations using digital post-processing MRI—reliability in ischemic internuclear ophthalmology. Eur J Neurol. 2001;8:489–93.CrossRefPubMedGoogle Scholar
  17. 17.
    Flipse JP, Straathof CSM, Van der Steen J, Van Leeuwen AF, Van Doorn PA, Van der Meché, et al. Binocular saccadic eye movements in multiple sclerosis. J Neurol Sci. 1997;148:53–65.Google Scholar
  18. 18.
    Frohman EM, Frohman TC, O’Suilleabhain P, Zhang H, Hawker K, Racke M, et al. Quantitative oculographic characterization of internuclear ophthalmoparesis in multiple sclerosis: the versional dysconjugacy index Z score. J Neurol Neurosurg Psychiatry. 2002;73:51–5.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Ventre J, Vighetto A, Bailly G, Prablanc C. Saccade metrics in multiple sclerosis: versional velocity disconjugacy as the best clue? J Neurol Sci. 1991;102:144–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Alexander JA, Castillo M, Hoffman JC. Magnetic resonance findings in a patient with internuclear ophthalmoplegia. J Clin Neuroophthalmol. 1991;11:58–61.Google Scholar
  21. 21.
    Balanos I, Lozano D, Cantú C. Internuclear ophthalmoplegia: causes and long-term follow-up in 65 patients. Acta Neurol Scand. 2004;110:161–5.CrossRefGoogle Scholar
  22. 22.
    De Seze J, Lucas C, Leclerc X, Sahli A, Vermersch P, Leys D. One-and-a-half syndrome in pontine infarcts: MRI correlates. Neuroradiology. 1999;41:666–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Eggenberger E, Golnik K, Lee A, Santos R, Suntay A, Satana B, et al. Prognosis of ischaemic internuclear ophthalmoplegia. Ophthalmology. 2002;109:1676–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Korteweg T, Tintoré M, Uitdehaag B, Rovira A, Frederiksen J, Miller D, et al. MRI criteria for dissemination in space in patients with clinically isolated syndromes: a multicentre follow-up study. Lancet Neurol. 2006;5:221–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Simon JH, Li D, Traboulsee A, Coyle PK, Arnold DL, Barkhof F, et al. Standardized MR imaging protocol for multiple sclerosis: consortium of MS centers consensus guidelines. AJNR Am J Neuroradiol. 2006;27:455–61.PubMedGoogle Scholar
  26. 26.
    The Consortium of Multiple Sclerosis Centers. Consortium of MS centres MRI protocol for the diagnosis and follow-up of MS. 2009 revised guidelines. 2009. http://c.ymcdn.com/sites/www.mscare.org/resource/collection/9C5F19B9-3489-48B0-A54B-623A1ECEE07B/mriprotocol2009.pdf.
  27. 27.
    Filippi M, Yousry T, Baratti C, Horsfield MA, Mammi S, Becker C, et al. Quantitative assessment of MRI lesion load in multiple sclerosis. A comparison of conventional spin-echo with fast fluid attenuation inversion recovery. Brain. 1996;119:1349–55.CrossRefPubMedGoogle Scholar
  28. 28.
    Yousry TA, Filippi M, Becker C, Horsfield MA, Voltz R. Comparison of MR pulse sequences in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol. 1997;18:959–63.PubMedGoogle Scholar
  29. 29.
    Pikus L, Woo JH, Wolf RL, Herskovits EH, Moonis G, Jawad AF, et al. Artificial multiple sclerosis lesions on simulated FLAIR brain MR images: echo time and observer performance in detection. Radiology. 2006;239:238–45.CrossRefPubMedGoogle Scholar
  30. 30.
    Woo JH, Henry LP, Krejza J, Melhem ER. Detection of simulated multiple sclerosis lesions on T2-weighted and FLAIR images of the brain: observer performance. Radiology. 2006;241:206–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Wattjes MP, Lutterbey GG, Harzheim M, Gieseke J, Traber F, Klotz L, et al. Imaging of inflammatory lesions at 3.0 Tesla in patients with clinically isolated syndromes suggestive of multiple sclerosis: a comparison of fluid-attenuated inversion recovery with T2 turbo spin-echo. Eur Radiol. 2006;16:1494–500.CrossRefPubMedGoogle Scholar
  32. 32.
    Metz CE. Receiver operating characteristic analysis: a tool for the quantitative evaluation of observer performance and imaging systems. J Am Coll Radiol. 2006;3:413–22.CrossRefPubMedGoogle Scholar
  33. 33.
    Stevenson VL, Parker GJM, Barker GJ, Birnie K, Tofts PS, Miller DH, et al. Variations in T1 and T2 relaxation times of normal appearing white matter and lesions in multiple sclerosis. J Neurol Sci. 2000;178:81–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Simon B, Schmidt S, Lukas C, Gieseke J, Traber F, Knol DL, et al. Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla. Eur Radiol. 2010;20:1675–83.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. P. McNulty
    • 1
  • R. Lonergan
    • 2
  • P. C. Brennan
    • 3
  • M. G. Evanoff
    • 4
  • R. O’Laoide
    • 2
  • J. T. Ryan
    • 1
  • N. Tubridy
    • 2
  1. 1.School of Medicine and Medical ScienceUniversity College DublinBelfieldIreland
  2. 2.St. Vincent’s University HospitalDublin 4Ireland
  3. 3.Faculty of Health SciencesUniversity of SydneyLidcombeAustralia
  4. 4.The American Board of RadiologyTucsonUSA

Personalised recommendations