Advertisement

Clinical Neuroradiology

, Volume 19, Issue 3, pp 204–214 | Cite as

Effect of Flow Diverter Porosity on Intraaneurysmal Blood Flow

  • Luca Augsburger
  • Mohamed Farhat
  • Philippe Reymond
  • Edouard Fonck
  • Zsolt Kulcsar
  • Nikos Stergiopulos
  • Daniel A. Rüfenacht
Original Article

Abstract

Background and Purpose:

Growth and rupture, the two events that dominate the evolution of an intracranial aneurysm, are both dependent on intraaneurysmal flow. Decrease of intraaneurysmal flow is considered an attractive alternative for treating intracranial aneurysms by minimally invasive techniques. Such modification can be achieved by inserting stents or flow diverters alone. In the present paper, the effect of different commercial and innovative flow diverters’ porosity was studied in intracranial aneurysm models.

Material and Methods:

Single and stent-in-stent combination of Neuroform II as well as single and stent-in-stent combination of a new innovative, low-porosity, intracranial stent device (D1, D2, D1 + D2) were inserted in models of intracranial aneurysms under shear-driven flow and inertia-driven flow configurations. Steady and pulsating flow rates were applied using a blood-like fluid. Particle image velocimetry was used to measure velocity vector fields in the aneurysm midplane along the vessel axis. Flow and vorticity patterns, velocity and vorticity magnitudes were quantified and their value compared with the same flows in absence of the flow diverter.

Results:

In absence of flow diverters, a solid-like rotation could be observed in both shear-driven and inertia-driven models under steady and pulsatile flow conditions. The flow effects due to the insertion of low-porous devices such as D1 or D2 provoked a complete alteration of the flow patterns and massive reduction of velocity or vorticity magnitudes, whereas the introduction of clinically adopted high-porous devices provoked less effect in the aneurysm cavity. As expected, results showed that the lower the porosity the larger the reduction in velocity and vorticity within the aneurysm cavity. The lowest-porosity device combination (D1 and D2) reached an averaged reduction of flow parameters of 80% and 88% under steady and pulsatile flow conditions, respectively. The reduction in mean velocity and vorticity was much more significant in the shear-driven flows as compared to the inertia-driven flows.

Conclusion:

Although device porosity is the main parameter influencing flow reduction, other parameters such as device design and local flow conditions may influence the level of flow reduction within intracranial aneurysms.

Key Words

Intracranial aneurysms Particle image velocimetry Porosity Experimental setup Shear-driven flow Inertia-driven flow 

Effekt der Porosität von „flow diverters“ auf den intraaneurysmatischen Blutfluss

Zusammenfassung

Hintergrund und Ziel:

Die zwei wichtigsten Faktoren für die Entwicklung intrazerebraler Aneurysmen, nämlich Wachstum und Ruptur, hängen vom intraaneurysmatischen Blutfluss ab. Eine Verminderung des intraaneurysmatischen Blutflusses durch minimalinvasive Techniken wird als attraktive Behandlungsmethode erachtet. Eine solche Modifikation des Blutflusses kann durch das Einbringen eines Stents oder „flow diverter“ allein erzielt werden. In der vorliegenden Arbeit untersuchten die Autoren den Effekt der Porosität verschiedener handelsüblicher und innovativer „flow diverters“ an Modellen intrakranieller Aneurysmen.

Material und Methodik:

Sowohl einzelne oder Stent-in-Stent-Kombinationen des Neuroform II (NF) als auch einzelne oder Stent-in-Stent-Kombinationen von neuen innovativen, niedrigporösen intrakraniellen Stents (D1, D2, D1 + D2) wurden in Modellen intrakranieller Aneurysmen mit Eigenschaften von „shear-driven“ und „inertia-driven“ Fluss platziert. Flächen mit Geschwindigkeitsvektoren in der mittleren Ebene des Aneurysmas parallel zur Achse des Gefäßes wurden mit Hilfe der „particle image velocimetry“ (PIV) ermittelt. Eigenschaften von Fluss und Verwirbelungen, Geschwindigkeit und Ausmaß von Verwirbelungen wurden gemessen und mit Messwerten des gleichen Modells ohne „flow diverter“ verglichen.

Ergebnisse:

Ohne „flow diverter“ konnte eine beständige Rotation in beiden – „shear-driven“ und „inertia-driven“ – Flussmodellen beobachtet werden. Die Auswirkungen nach Platzierung eines niedrigporösen Modells wie D1 oder D2 riefen eine komplette Änderung der Flusseigenschaften und eine massive Verringerung der Geschwindigkeit und des Ausmaßes von Verwirbelungen hervor, wohingegen die Platzierung klinisch angewendeter hochporöser Modelle geringere Auswirkungen auf die Kavität des Aneurysmas hatte. Erwartungsgemäß haben die Ergebnisse gezeigt: Je kleiner die Porosität ist, desto größer sind die Auswirkungen auf Blutflussgeschwindigkeit und Verwirbelungen im Aneurysma. Die Kombination mit der geringsten Porosität (D1 und D2) erzielte eine durchschnittliche Reduktion der Flussparameter um 80% bzw. 88% bei konstanten und pulsatilen Flüssen. Die Verminderung von mittlerer Geschwindigkeit und von Verwirbelungen war beim „shear-driven“ Fluss deutlich signifikanter als beim „inertia-driven“ Fluss.

Schlussfolgerung:

Obwohl die Porosität der wichtigste Parameter zur Senkung des Flusses ist, können andere Parameter wie das Design des jeweiligen Modells oder lokale Flusseigenschaften die Wirksamkeit der Flussreduktion in intrakraniellen Aneurysmen beeinflussen.

Schlüsselwörter

Intrakranielle Aneurysmen Particle image velocimetry Porosität Experimenteller Aufbau Shear-driven flow Inertia-driven flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr, Piepgras DG, Forbes GS, Thielen K, Nichols D, O’Fallon W M, Peacock J, Jaeger L, Kassell NF, Kongable-Beckman GL, Torner JC. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003:362:103–10PubMedCrossRefGoogle Scholar
  2. 2.
    van der Schaaf I, Algra A, Wermer M, Molyneux A, Clarke M, van Gijn J, Rinkel G. Endovascular coiling versus neurosurgical clipping for patients with aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev 2005;4:CD003085Google Scholar
  3. 3.
    Duerig TW, Wholey M. A comparison of balloon- and self-expanding stents. Minim Invasive Ther Allied Technol 2002;11:173–8CrossRefGoogle Scholar
  4. 4.
    Kim SH, Choi CH, Lee TH, Lee SW. Endovascular treatment by using double stent method for ruptured vertebral artery dissecting aneurysms. J Korean Neurosurg Soc 2005;38:132–5Google Scholar
  5. 5.
    Ahn JY, Han IB, Kim TG, Yoon PH, Lee YJ, Lee BH, Seo SH, Kim DI, Hong CK, Joo JY. Endovascular treatment of intracranial vertebral artery dissections with stent placement or stent-assisted coiling. AJNR Am J Neuroradiol 2006;27:1514–20PubMedGoogle Scholar
  6. 6.
    Benndorf G, Herbon U, Sollmann WP, Campi A. Treatment of a ruptured dissecting vertebral artery aneurysm with double stent placement: case report. AJNR Am J Neuroradiol 2001;22:1844–8PubMedGoogle Scholar
  7. 7.
    Zenteno MA, Murillo-Bonilla LM, Guinto G, Gomez CR, Martinez SR, Higuera-Calleja J, Lee A, Gomez-Llata S. Sole stenting bypass for the treatment of vertebral artery aneurysms: technical case report. Neurosurgery 2005;57:Suppl:E208, discussion E208PubMedCrossRefGoogle Scholar
  8. 8.
    Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA, Cloft HJ. A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke 2007;38:2346–52PubMedCrossRefGoogle Scholar
  9. 9.
    Ahlhelm F, Roth C, Kaufmann R, Schulte-Altedorneburg G, Romeike BF, Reith W. Treatment of wide-necked intracranial aneurysms with a novel self-expanding two-zonal endovascular stent device. Neuroradiology 2007;49:1023–8PubMedCrossRefGoogle Scholar
  10. 10.
    Vanninen R, Manninen H, Ronkainen A. Broad-based intracranial aneurysms: thrombosis induced by stent placement. AJNR Am J Neuroradiol 2003;24:263–6PubMedGoogle Scholar
  11. 11.
    Lieber BB, Stancampiano AP, Wakhloo AK. Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity. Ann Biomed Eng 1997;25:460–9PubMedCrossRefGoogle Scholar
  12. 12.
    Meng H, Wang Z, Kim M, Ecker RD, Hopkins LN. Saccular aneurysms on straight and curved vessels are subject to different hemodynamics: implications of intravascular stenting. AJNR Am J Neuroradiol 2006;27:1861–5PubMedGoogle Scholar
  13. 13.
    Kim C, Cervos-Navarro J, Patzold C, Tokuriki Y, Takebe Y, Hori K. In vivo study of flow pattern at human carotid bifurcation with regard to aneurysm development. Acta Neurochir (Wien) 1992;115:112–7CrossRefGoogle Scholar
  14. 14.
    Nakatani H, Hashimoto N, Kikuchi H, Yamaguchi S, Niimi H. In vivo flow visualization of induced saccular cerebral aneurysms in rats. Acta Neurochir (Wien) 1993;122:244–9CrossRefGoogle Scholar
  15. 15.
    Rhee K, Han MH, Cha SH. Changes of flow characteristics by stenting in aneurysm models: influence of aneurysm geometry and stent porosity. Ann Biomed Eng 2002;30:894–904PubMedCrossRefGoogle Scholar
  16. 16.
    Barath K, Cassot F, Fasel JH, Ohta M, Rufenacht DA. Influence of stent properties on the alteration of cerebral intra-aneurysmal haemodynamics: flow quantification in elastic sidewall aneurysm models. Neurol Res 2005;27:Suppl 1:S120–8PubMedCrossRefGoogle Scholar
  17. 17.
    Barath K, Cassot F, Rufenacht DA, Fasel JH. Anatomically shaped internal carotid artery aneurysm in vitro model for flow analysis to evaluate stent effect. AJNR Am J Neuroradiol 2004;25:1750–9PubMedGoogle Scholar
  18. 18.
    Ohta M, Fujimura N, Augsburger L, Barath K, Yilmaz H, Abdo G, Lovblad KO, Rufenacht DA. Subtracted vortex centers path line method with cinematic angiography for measurement of flow speed in cerebral aneurysms. Neurol Res 2008;30:251–5PubMedCrossRefGoogle Scholar
  19. 19.
    Lieber BB, Livescu V, Hopkins LN, Wakhloo AK. Particle image velocimetry assessment of stent design influence on intra-aneurysmal flow. Ann Biomed Eng 2002;30:768–77PubMedCrossRefGoogle Scholar
  20. 20.
    Canton G, Levy DI, Lasheras JC, Nelson PK. Flow changes caused by the sequential placement of stents across the neck of sidewall cerebral aneurysms. J Neurosurg 2005;103:891–902PubMedCrossRefGoogle Scholar
  21. 21.
    Yu SC, Zhao JB. A steady flow analysis on the stented and non-stented sidewall aneurysm models. Med Eng Phys 1999;21:133–41PubMedCrossRefGoogle Scholar
  22. 22.
    Canton G, Levy DI, Lasheras JC. Hemodynamic changes due to stent placement in bifurcating intracranial aneurysms. J Neurosurg 2005; 103:146–55PubMedCrossRefGoogle Scholar
  23. 23.
    Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, Morita A, Kirino T. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004;35:2500–5PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel, Muenchen 2009

Authors and Affiliations

  • Luca Augsburger
    • 1
    • 2
    • 4
  • Mohamed Farhat
    • 3
  • Philippe Reymond
    • 1
  • Edouard Fonck
    • 1
    • 2
  • Zsolt Kulcsar
    • 2
  • Nikos Stergiopulos
    • 1
  • Daniel A. Rüfenacht
    • 2
  1. 1.Laboratory of Hemodynamics and Cardiovascular TechnologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Neuro-Interventional ServiceClinical Neurosciences Department, University Hospital of GenevaGenevaSwitzerland
  3. 3.Hydraulic Machines LaboratoryÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  4. 4.Hemodynamic and Cardiovascular Technology LaboratoryLife Science École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations