pp 1–8 | Cite as

Right ventricular function in pulmonary (arterial) hypertension

  • K. TelloEmail author
  • H. Gall
  • M. Richter
  • A. Ghofrani
  • R. Schermuly
Main topic


The right ventricle (RV) is the main determinant of prognosis in pulmonary hypertension. Adaptation and maladaptation of the RV are of crucial importance. In the course of disease, RV contractility increases through changes in muscle properties and muscle hypertrophy. At a certain point, the point of “uncoupling,” the afterload exceeds contractility, and maladaptation as well as dilation occurs to maintain stroke volume (SV). To understand the adaptational processes and to further develop targeted medication directly affecting load-independent contractility, an accurate and precise assessment of contractility and RV–pulmonary artery (PA) coupling should be performed. In this review, we shed light on existing methods to assess RV function, including the gold standard measurement of contractility and RV–PA coupling, and we evaluate existing surrogates of RV–PA coupling.


Contractility Right heart failure Pulmonary hypertension Coupling Right heart function 

Rechtsventrikuläre Funktion bei pulmonaler (arterieller) Hypertonie


Die Funktion des rechten Ventrikels (RV) ist für die Prognose der pulmonalen Hypertonie (PH) ein entscheidender Faktor. Dabei spielen adaptive und maladaptive Prozesse eine wichtige Rolle. Ein entscheidender Faktor der Adaptation ist die Erhöhung der nachlastunabhängigen Kontraktilität des RV als Reaktion auf die Nachlast. Diese wird zu Beginn der Erkrankung durch z. B. muskuläre Hypertrophie gesteigert. Am Beginn der Maladaptation kann jedoch die Kontraktilität den Anstieg der Nachlast nicht kompensieren, und es kommt zu einem „Entkoppeln“ der Achse zwischen RV und Pulmonalarterien (PA) und zu einer Maladaptation und Dilatation, um das das Schlagvolumen (SV) zu erhalten. Um einerseits diese adaptiven und maladaptiven Prozesse zu analysieren und andererseits therapeutische Strategien zu entwickeln, die auf die lastunabhängige Kontraktilität zielen, sollte die Kontraktilität des RV bestmöglich gemessen werden. In diesem Übersichtsartikel werden Methoden vorgestellt, die nach derzeitigem Stand die Funktion der RV-PA-Achse am genauesten darstellen, und Methoden beurteilt, die als Surrogate dafür verwendet werden.


Kontraktilität Rechtsherzinsuffizienz Pulmonale Hypertonie Kopplung Rechtsherzfunktion 


Compliance with ethical guidelines

Conflict of interest

K. Tello, H. Gall, M. Richter, A. Ghofrani, and R. Schermuly declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.


  1. 1.
    Andersen S, Nielsen-Kudsk JE, Vonk Noordegraaf A et al (2019) Right ventricular fibrosis. Circulation 139:269–285CrossRefGoogle Scholar
  2. 2.
    Axell RG, Messer SJ, White PA et al (2017) Ventriculo-arterial coupling detects occult RV dysfunction in chronic thromboembolic pulmonary vascular disease. Physiol Rep 5(7):e13227CrossRefGoogle Scholar
  3. 3.
    Badagliacca R, Papa S, Valli G et al (2017) Right ventricular dyssynchrony and exercise capacity in idiopathic pulmonary arterial hypertension. Eur Respir J 49(6):1601419. CrossRefPubMedGoogle Scholar
  4. 4.
    Badagliacca R, Poscia R, Pezzuto B et al (2015) Right ventricular remodeling in idiopathic pulmonary arterial hypertension: Adaptive versus maladaptive morphology. J Heart Lung Transplant 34:395–403CrossRefGoogle Scholar
  5. 5.
    Baggen VJ, Leiner T, Post MC et al (2016) Cardiac magnetic resonance findings predicting mortality in patients with pulmonary arterial hypertension: A systematic review and meta-analysis. Eur Radiol 26:3771–3780CrossRefGoogle Scholar
  6. 6.
    Bosch L, Lam CSP, Gong L et al (2017) Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail 19:1664–1671CrossRefGoogle Scholar
  7. 7.
    Brewis MJ, Bellofiore A, Vanderpool RR et al (2016) Imaging right ventricular function to predict outcome in pulmonary arterial hypertension. Int J Cardiol 218:206–211CrossRefGoogle Scholar
  8. 8.
    Brimioulle S, Wauthy P, Ewalenko P et al (2003) Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol Heart Circ Physiol 284:H1625–H1630CrossRefGoogle Scholar
  9. 9.
    Claessen G, La Gerche A, Voigt JU et al (2016) Accuracy of echocardiography to evaluate pulmonary vascular and RV function during exercise. JACC Cardiovasc Imaging 9:532–543CrossRefGoogle Scholar
  10. 10.
    De Tombe PP, Jones S, Burkhoff D et al (1993) Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am J Physiol 264:H1817–H1824PubMedGoogle Scholar
  11. 11.
    Dickstein ML, Yano O, Spotnitz HM et al (1995) Assessment of right ventricular contractile state with the conductance catheter technique in the pig. Cardiovasc Res 29:820–826CrossRefGoogle Scholar
  12. 12.
    Forfia PR, Fisher MR, Mathai SC et al (2006) Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 174:1034–1041CrossRefGoogle Scholar
  13. 13.
    Fourie PR, Coetzee AR, Bolliger CT (1992) Pulmonary artery compliance: Its role in right ventricular-arterial coupling. Cardiovasc Res 26:839–844CrossRefGoogle Scholar
  14. 14.
    Freed BH, Gomberg-Maitland M, Chandra S et al (2012) Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J Cardiovasc Magn Reson 14:11CrossRefGoogle Scholar
  15. 15.
    French S, Amsallem M, Ouazani N et al (2018) Non-invasive right ventricular load adaptability indices in patients with scleroderma-associated pulmonary arterial hypertension. Pulm Circ. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Galie N, Hoeper MM, Humbert M et al (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 34:1219–1263CrossRefGoogle Scholar
  17. 17.
    García-Álvarez A, García-Lunar I, Pereda D et al (2015) Association of myocardial T1-mapping CMR with hemodynamics and RV performance in pulmonary hypertension. JACC Cardiovasc Imaging 8:76–82CrossRefGoogle Scholar
  18. 18.
    Gerges M, Gerges C, Pistritto AM et al (2015) Pulmonary hypertension in heart failure. Epidemiology, right ventricular function, and survival. Am J Respir Crit Care Med 192:1234–1246CrossRefGoogle Scholar
  19. 19.
    Ghuysen A, Lambermont B, Kolh P et al (2008) Alteration of right ventricular-pulmonary vascular coupling in a porcine model of progressive pressure overloading. Shock 29:197–204PubMedGoogle Scholar
  20. 20.
    Gorter TM, van Veldhuisen DJ, Voors AA et al (2018) Right ventricular-vascular coupling in heart failure with preserved ejection fraction and pre- vs. post-capillary pulmonary hypertension. Eur Heart J Cardiovasc Imaging 19:425–432CrossRefGoogle Scholar
  21. 21.
    Grapsa J, Gibbs JS, Cabrita IZ et al (2012) The association of clinical outcome with right atrial and ventricular remodelling in patients with pulmonary arterial hypertension: Study with real-time three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 13:666–672CrossRefGoogle Scholar
  22. 22.
    Grapsa J, Pereira Nunes MC, Tan TC et al (2015) Echocardiographic and hemodynamic predictors of survival in precapillary pulmonary hypertension: Seven-year follow-up. Circ Cardiovasc Imaging. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Grewal J, Majdalany D, Syed I et al (2010) Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: Comparison with magnetic resonance imaging. J Am Soc Echocardiogr 23:127–133CrossRefGoogle Scholar
  24. 24.
    Guazzi M (2018) Use of TAPSE/PASP ratio in pulmonary arterial hypertension: An easy shortcut in a congested road. Int J Cardiol 266:242–244CrossRefGoogle Scholar
  25. 25.
    Guazzi M, Bandera F, Pelissero G et al (2013) Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: An index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol 305:H1373–H1381CrossRefGoogle Scholar
  26. 26.
    Guazzi M, Dixon D, Labate V et al (2017) RV contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction: Stratification of clinical phenotypes and outcomes. JACC Cardiovasc Imaging 10:1211–1221CrossRefGoogle Scholar
  27. 27.
    Guazzi M, Naeije R, Arena R et al (2015) Echocardiography of right Ventriculoarterial coupling combined with cardiopulmonary exercise testing to predict outcome in heart failure. Chest 148:226–234CrossRefGoogle Scholar
  28. 28.
    Hsu S, Houston BA, Tampakakis E et al (2016) Right ventricular functional reserve in pulmonary arterial hypertension. Circulation 133:2413–2422CrossRefGoogle Scholar
  29. 29.
    Hulshof HG, Eijsvogels TMH, Kleinnibbelink G et al (2018) Prognostic value of right ventricular longitudinal strain in patients with pulmonary hypertension: A systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging 20(4):475–484CrossRefGoogle Scholar
  30. 30.
    Iles L, Pfluger H, Phrommintikul A et al (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52:1574–1580CrossRefGoogle Scholar
  31. 31.
    Inuzuka R, Hsu S, Tedford RJ et al (2018) Single-beat estimation of right ventricular contractility and its coupling to pulmonary arterial load in patients with pulmonary hypertension. J Am Heart Assoc 7(10):e7929CrossRefGoogle Scholar
  32. 32.
    Jone PN, Schäfer M, Pan Z et al (2018) 3D echocardiographic evaluation of right ventricular function and strain: A prognostic study in paediatric pulmonary hypertension. Eur Heart J Cardiovasc Imaging 19:1026–1033CrossRefGoogle Scholar
  33. 33.
    Kuehne T, Yilmaz S, Steendijk P et al (2004) Magnetic resonance imaging analysis of right ventricular pressure-volume loops: In vivo validation and clinical application in patients with pulmonary hypertension. Circulation 110:2010–2016CrossRefGoogle Scholar
  34. 34.
    Lahm T, Douglas IS, Archer SL et al (2018) Assessment of right ventricular function in the research setting: Knowledge gaps and pathways forward. An official American Thoracic Society research statement. Am J Respir Crit Care Med 198:e15–e43CrossRefGoogle Scholar
  35. 35.
    Lamia B, Muir JF, Molano LC et al (2017) Altered synchrony of right ventricular contraction in borderline pulmonary hypertension. Int J Cardiovasc Imaging 33(9):1331–1339CrossRefGoogle Scholar
  36. 36.
    Levy PT, El Khuffash A, Woo KV et al (2018) Right ventricular-pulmonary vascular interactions: An emerging role for pulmonary artery acceleration time by echocardiography in adults and children. J Am Soc Echocardiogr 31:962–964CrossRefGoogle Scholar
  37. 37.
    Maffessanti F, Muraru D, Esposito R et al (2013) Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: A multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imaging 6:700–710CrossRefGoogle Scholar
  38. 38.
    Maughan WL, Shoukas AA, Sagawa K et al (1979) Instantaneous pressure-volume relationship of the canine right ventricle. Circ Res 44:309–315CrossRefGoogle Scholar
  39. 39.
    McCabe C, White PA, Hoole SP et al (2014) Right ventricular dysfunction in chronic thromboembolic obstruction of the pulmonary artery: A pressure-volume study using the conductance catheter. J Appl Physiol 116:355–363CrossRefGoogle Scholar
  40. 40.
    McCabe C, White PA, Rana BS et al (2014) Right ventricle functional assessment: Have new techniques supplanted the old faithful conductance catheter? Cardiol Rev 22(5):233–240CrossRefGoogle Scholar
  41. 41.
    Mewton N, Liu CY, Croisille P et al (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 57:891–903CrossRefGoogle Scholar
  42. 42.
    Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 17:1321–1360CrossRefGoogle Scholar
  43. 43.
    Peacock AJ, Crawley S, McLure L et al (2014) Changes in right ventricular function measured by cardiac magnetic resonance imaging in patients receiving pulmonary arterial hypertension-targeted therapy: The EURO-MR study. Circ Cardiovasc Imaging 7:107–114CrossRefGoogle Scholar
  44. 44.
    Pratali L, Allemann Y, Rimoldi SF et al (2013) RV contractility and exercise-induced pulmonary hypertension in chronic mountain sickness: A stress echocardiographic and tissue Doppler imaging study. JACC Cardiovasc Imaging 6:1287–1297CrossRefGoogle Scholar
  45. 45.
    Prins KW, Archer SL, Pritzker M et al (2018) Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension. J Heart Lung Transplant 37:376–384CrossRefGoogle Scholar
  46. 46.
    Prins KW, Weir EK, Archer SL et al (2016) Pulmonary pulse wave transit time is associated with right ventricular-pulmonary artery coupling in pulmonary arterial hypertension. Pulm Circ 6:576–585CrossRefGoogle Scholar
  47. 47.
    Rain S, Handoko ML, Trip P et al (2013) Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 128:2016–2025CrossRefGoogle Scholar
  48. 48.
    Redington AN, Gray HH, Hodson ME et al (1988) Characterisation of the normal right ventricular pressure-volume relation by biplane angiography and simultaneous micromanometer pressure measurements. Br Heart J 59:23–30CrossRefGoogle Scholar
  49. 49.
    Rex S, Missant C, Claus P et al (2008) Effects of inhaled iloprost on right ventricular contractility, right ventriculo-vascular coupling and ventricular interdependence: A randomized placebo-controlled trial in an experimental model of acute pulmonary hypertension. Crit Care (Lond) 12:R113CrossRefGoogle Scholar
  50. 50.
    Richter MJ, Ghofrani HA, Gall H (2018) Beyond interleukin-6 in right ventricular function: Evidence for another biomarker. J Heart Lung Transplant 37:674–675CrossRefGoogle Scholar
  51. 51.
    Sanz J, García-Alvarez A, Fernández-Friera L et al (2012) Right ventriculo-arterial coupling in pulmonary hypertension: A magnetic resonance study. Heart 98:238–243CrossRefGoogle Scholar
  52. 52.
    Sato T, Ambale-Venkatesh B, Lima JAC et al (2018) The impact of ambrisentan and tadalafil upfront combination therapy on cardiac function in scleroderma associated pulmonary arterial hypertension patients: Cardiac magnetic resonance feature tracking study. Pulm Circ. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Shehata ML, Lossnitzer D, Skrok J et al (2011) Myocardial delayed enhancement in pulmonary hypertension: Pulmonary hemodynamics, right ventricular function, and remodeling. AJR Am J Roentgenol 196:87–94CrossRefGoogle Scholar
  54. 54.
    Spruijt OA, De Man FS, Groepenhoff H et al (2015) The effects of exercise on right ventricular contractility and right ventricular-arterial coupling in pulmonary hypertension. Am J Respir Crit Care Med 191:1050–1057CrossRefGoogle Scholar
  55. 55.
    Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322CrossRefGoogle Scholar
  56. 56.
    Swift AJ, Capener D, Johns C et al (2017) Magnetic resonance imaging in the prognostic evaluation of patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 196(2):228–239CrossRefGoogle Scholar
  57. 57.
    Tedford RJ, Mudd JO, Girgis RE et al (2013) Right ventricular dysfunction in systemic sclerosis-associated pulmonary arterial hypertension. Circ Heart Fail 6:953–963CrossRefGoogle Scholar
  58. 58.
    Tello K, Axmann J, Ghofrani HA et al (2018) Relevance of the TAPSE/PASP ratio in pulmonary arterial hypertension. Int J Cardiol 266:229–235CrossRefGoogle Scholar
  59. 59.
    Tello K, Dalmer A, Axmann J et al (2019) Reserve of right ventricular-arterial coupling in the setting of chronic overload. Circ Heart Fail 12:e5512CrossRefGoogle Scholar
  60. 60.
    Tello K, Dalmer A, Husain-Syed F et al (2019) Multi-beat right ventricular-arterial coupling during a positive acute vaso-reactivity test. Am J Respir Crit Care Med. CrossRefPubMedGoogle Scholar
  61. 61.
    Tello K, Dalmer A, Vanderpool R et al (2019) Cardiac magnetic resonance imaging-based right ventricular strain analysis for assessment of coupling and diastolic function in pulmonary hypertension. JACC Cardiovasc Imaging. CrossRefPubMedGoogle Scholar
  62. 62.
    Tello K, Richter MJ, Axmann J et al (2018) More on single-beat estimation of right ventriculoarterial coupling in pulmonary arterial hypertension. Am J Respir Crit Care Med 198:816–818CrossRefGoogle Scholar
  63. 63.
    Trip P, Kind T, van de Veerdonk MC et al (2013) Accurate assessment of load-independent right ventricular systolic function in patients with pulmonary hypertension. J Heart Lung Transplant 32:50–55CrossRefGoogle Scholar
  64. 64.
    Trip P, Rain S, Handoko ML et al (2015) Clinical relevance of right ventricular diastolic stiffness in pulmonary hypertension. Eur Respir J 45:1603–1612CrossRefGoogle Scholar
  65. 65.
    van de Veerdonk MC, Huis in ’t Veld AE, Marcus JT et al (2017) Upfront combination therapy reduces right ventricular volumes in pulmonary arterial hypertension. Eur Respir J. CrossRefPubMedGoogle Scholar
  66. 66.
    van de Veerdonk MC, Kind T, Marcus JT et al (2011) Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol 58:2511–2519CrossRefGoogle Scholar
  67. 67.
    van de Veerdonk MC, Marcus JT, Westerhof N et al (2015) Signs of right ventricular deterioration in clinically stable patients with pulmonary arterial hypertension. Chest 147:1063–1071CrossRefGoogle Scholar
  68. 68.
    Vanderpool RR, Desai AA, Knapp SM et al (2017) How prostacyclin therapy improves right ventricular function in pulmonary arterial hypertension. Eur Respir J. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Vanderpool RR, Pinsky MR, Naeije R et al (2015) RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension. Heart 101:37–43CrossRefGoogle Scholar
  70. 70.
    Vanderpool RR, Rischard F, Naeije R et al (2016) Simple functional imaging of the right ventricle in pulmonary hypertension: Can right ventricular ejection fraction be improved? Int J Cardiol 223:93–94CrossRefGoogle Scholar
  71. 71.
    Vogel M, Schmidt MR, Kristiansen SB et al (2002) Validation of myocardial acceleration during isovolumic contraction as a novel noninvasive index of right ventricular contractility: Comparison with ventricular pressure-volume relations in an animal model. Circulation 105:1693–1699CrossRefGoogle Scholar
  72. 72.
    Vonk Noordegraaf A, Chin KM, Haddad F et al (2018) Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: An update. Eur Respir J. CrossRefPubMedGoogle Scholar
  73. 73.
    Vonk Noordegraaf A, Westerhof BE, Westerhof N (2017) The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol 69:236–243CrossRefGoogle Scholar
  74. 74.
    Wang J, Prakasa K, Bomma C et al (2007) Comparison of novel echocardiographic parameters of right ventricular function with ejection fraction by cardiac magnetic resonance. J Am Soc Echocardiogr 20:1058–1064CrossRefGoogle Scholar
  75. 75.
    Wang Z, Yuan LJ, Cao TS et al (2013) Simultaneous beat-by-beat investigation of the effects of the Valsalva maneuver on left and right ventricular filling and the possible mechanism. PLoS ONE 8:e53917CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • K. Tello
    • 1
    Email author
  • H. Gall
    • 1
  • M. Richter
    • 1
  • A. Ghofrani
    • 1
  • R. Schermuly
    • 1
  1. 1.Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL)Justus-Liebig-University GießenGießenGermany

Personalised recommendations