Advertisement

Herz

pp 1–7 | Cite as

Heart failure and diabetes: management and open issues

  • K. SchüttEmail author
  • N. Marx
Main topic
  • 38 Downloads

Abstract

Diabetes mellitus is an important comorbidity in patients with heart failure. The presence of heart failure in diabetes worsens the prognosis of patients. Recent studies suggest that appropriate diagnostic approaches followed by differential medical treatment are of crucial importance to improve patient outcomes. This article summarizes important aspects of the association between diabetes mellitus and heart failure.

Keywords

Diabetic cardiomyopathy Cardiac failure Pathophysiology Diagnosis Therapy 

Abbreviations

ACE

Angiotensin-converting enzyme

ARB

Angiotensin II receptor blockers

ARNI

Angiotensin receptor-neprilysin inhibitor

BNP

Brain-type natriuretic peptide

CANVAS

Canagliflozin Cardiovascular Assessment Study

CARMELINA

The Cardiovascular and Renal Microvascular Outcome Study with Linagliptin in Patients with Type 2 Diabetes Mellitus

CAROLINA

Cardiovascular Outcome Study of Linagliptin Versus Glimepiride in Patients with Type 2 Diabetes

CHARM

Candesartan in Heart Failure—Assessment of Reduction in Mortality and Morbidity

COPD

Chronic obstructive pulmonary disease

CRT

Cardiac resynchronization therapy

CV

Cardiovascular

DECLARE TIMI 58

Multicenter Trial to Evaluate the Effect of Dapagliflozin on the Incidence of Cardiovascular Events

DIAMOND

Danish Investigations of Arrhythmia and Mortality on Dofetilide

DPP-4

Dipeptidyl peptidase-4

ECG

Electrocardiography

EMPA-REG Outcome

Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients

EXAMINE

Cardiovascular Outcomes Study of Alogliptin in Patients with Type 2 Diabetes and Acute Coronary Syndrome

GIP

Glucose-dependent insulinotropic peptide

GLP-1

Glucagon-like peptide 1

HARMONY

Effect of Albiglutide, When Added to Standard Blood Glucose-Lowering Therapies, on Major Cardiovascular Events in Subjects with Type 2 Diabetes Mellitus

HFmrEF

Heart failure mid-range ejection fraction

HFpEF

Heart failure with preserved ejection fraction

HFrEF

Heart failure with reduced ejection fraction

ICD

Implantable cardioverter defibrillator

LAVI

Left atrial volume index

LEADER

Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcomes Results

LVEF

Left ventricular ejection fraction

LVMI

Left ventricular mass index

MRA

Mineralocorticoid receptor antagonists

MRI

Magnetic resonance imaging

NT-proBNP

N-terminal pro-brain natriuretic peptide

NYHA

New York Heart Association

ORIGIN

Outcome Reduction with Initial Glargine Intervention

PARADIGM-HF

A Multicenter, Randomized, Double-blind, Parallel Group, Active-controlled Study to Evaluate the Efficacy and Safety of LCZ696 Compared to Enalapril on Morbidity and Mortality in Patients With Chronic Heart Failure and Reduced Ejection Fraction

SAVOR-TIMI 53

A Multicentre, Randomised, Double-Blind, Placebo-Controlled Phase IV Trial to Evaluate the Effect of Saxagliptin on the Incidence of Cardiovascular Death, Myocardial Infarction or Ischaemic Stroke in Patients With Type 2 Diabetes

SGLT2

Sodium-dependent glucose transporter

SUSTAIN 6

A Long-Term, Randomised, Double-Blind, Placebo-Controlled, Multinational, Multi-Centre Trial to Evaluate Cardiovascular and Other Long-Term Outcomes with Semaglutide in Subjects with Type 2 Diabetes (SUSTAIN™ 6: Long-Term Outcomes)

TECOS

A Randomized, Placebo Controlled Clinical Trial to Evaluate Cardiovascular Outcomes After Treatment with Sitagliptin in Patients with Type 2 Diabetes Mellitus and Inadequate Glycemic Control

UKPDS

The UK Prospective Diabetes Study

VALIANT

Valsartan in Acute Myocardial Infarction trial

Herzinsuffizienz und Diabetes mellitus: Behandlung und offene Fragen

Zusammenfassung

Diabetes mellitus stellt eine bedeutende Komorbidität bei Patienten mit Herzinsuffizienz dar. Durch das Vorliegen einer Herzinsuffizienz bei Diabetes mellitus verschlechtert sich die Prognose der Patienten. Um die Ergebnisse für die Patienten zu verbessern, sind aktuellen Studien zufolge entsprechend geeignete diagnostische Ansätze und daran anschließend eine differenzierte medizinische Behandlung von entscheidender Bedeutung. In dem vorliegenden Beitrag werden wichtige Aspekte des Zusammenhangs zwischen Diabetes mellitus und Herzinsuffizienz zusammengefasst.

Schlüsselwörter

Diabetische Kardiomyopathie Herzinsuffizienz Pathophysiologie Diagnose Therapie 

Notes

Compliance with ethical guidelines

Conflict of interest

K. Schütt declares the following: speaker fees from Amgen, AstraZeneca, Boehringer Ingelheim, MSD, Novo Nordisk, OmniaMed; research grant from Boehringer Ingelheim; advisory board member of Amgen, Boehringer Ingelheim. N. Marx declares the following: speaker fees from Amgen, Bayer, Boehringer Ingelheim, Sanofi-Aventis, MSD, BMS, AstraZeneca, Lilly, NovoNordisk, Bayer; research grant from Boehringer Ingelheim; advisory board member of Amgen, Bayer, Boehringer Ingelheim, Sanofi-Aventis, MSD, BMS, AstraZeneca, NovoNordisk. N. Marx declines all personal compensation from pharmaceutical or medical device companies.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Aguilar D, Chan W, Bozkurt B et al (2011) Metformin use and mortality in ambulatory patients with diabetes and heart failure. Circ Heart Fail 4:53–58CrossRefGoogle Scholar
  2. 2.
    Aguilar D, Solomon SD, Kober L et al (2004) Newly diagnosed and previously known diabetes mellitus and 1‑year outcomes of acute myocardial infarction: the VALsartan In Acute myocardial iNfarcTion (VALIANT) trial. Circulation 110:1572–1578CrossRefGoogle Scholar
  3. 3.
    Anonymous (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:837–853Google Scholar
  4. 4.
    Bahrami H, Bluemke DA, Kronmal R et al (2008) Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol 51:1775–1783CrossRefGoogle Scholar
  5. 5.
    Cavender MA, White WB, Jarolim P et al (2017) Serial measurement of high-sensitivity troponin I and cardiovascular outcomes in patients with type 2 diabetes mellitus in the EXAMINE trial (examination of cardiovascular outcomes with Alogliptin versus standard of care). Circulation 135:1911–1921CrossRefGoogle Scholar
  6. 6.
    Dormandy JA, Charbonnel B, Eckland DJ et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289CrossRefGoogle Scholar
  7. 7.
    Erdmann E, Charbonnel B, Wilcox RG et al (2007) Pioglitazone use and heart failure in patients with type 2 diabetes and preexisting cardiovascular disease: data from the PROactive study (PROactive 08). Diabetes Care 30:2773–2778CrossRefGoogle Scholar
  8. 8.
    Fitchett D, Zinman B, Wanner C et al (2016) Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur Heart J 37:1526–1534CrossRefGoogle Scholar
  9. 9.
    Gerstein HC, Bosch J, Dagenais GR et al (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367:319–328CrossRefGoogle Scholar
  10. 10.
    Green JB, Bethel MA, Armstrong PW et al (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373:232–242CrossRefGoogle Scholar
  11. 11.
    Gustafsson I, Brendorp B, Seibaek M et al (2004) Influence of diabetes and diabetes-gender interaction on the risk of death in patients hospitalized with congestive heart failure. J Am Coll Cardiol 43:771–777CrossRefGoogle Scholar
  12. 12.
    Hernandez AF, Green JB, Janmohamed S et al (2018) Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392(10157):1519–1529CrossRefGoogle Scholar
  13. 13.
    Kristensen SL, Preiss D, Jhund PS et al (2016) Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: insights from prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial. Circ Heart Fail.  https://doi.org/10.1161/circheartfailure.115.002560 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lehrke M, Marx N (2011) Cardiovascular effects of incretin-based therapies. Rev Diabet Stud 8:382–391CrossRefGoogle Scholar
  15. 15.
    Macdonald MR, Petrie MC, Varyani F et al (2008) Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur Heart J 29:1377–1385CrossRefGoogle Scholar
  16. 16.
    Marso SP, Bain SC, Consoli A et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844CrossRefGoogle Scholar
  17. 17.
    Marso SP, Daniels GH, Brown-Frandsen K et al (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322CrossRefGoogle Scholar
  18. 18.
    Marx N, Mcguire DK (2016) Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Eur Heart J 37:3192.  https://doi.org/10.1093/eurheartj/ehw110 CrossRefPubMedGoogle Scholar
  19. 19.
    Marx N, Rosenstock J, Kahn SE et al (2015) Design and baseline characteristics of the CARdiovascular Outcome Trial of LINAgliptin Versus Glimepiride in Type 2 Diabetes (CAROLINA(R)). Diab Vasc Dis Res 12:164–174CrossRefGoogle Scholar
  20. 20.
    Mcallister DA, Read SH, Kerssens J et al (2018) Incidence of hospitalization for heart failure and case-fatality among 3.25 million people with and without diabetes mellitus. Circulation 138:2774–2786CrossRefGoogle Scholar
  21. 21.
    Mcguire DK, Alexander JH, Johansen OE et al (2018) Linagliptin effects on heart failure and related outcomes in individuals with type 2 diabetes mellitus at high cardiovascular and renal risk in CARMELINA. Circulation 139:351.  https://doi.org/10.1161/circulationaha.118.038352 CrossRefGoogle Scholar
  22. 22.
    Mcguire DK, Van De Werf Armstrong FPW et al (2016) Association between Sitagliptin use and heart failure hospitalization and related outcomes in type 2 diabetes mellitus: secondary analysis of a randomized clinical trial. JAMA Cardiol 1:126–135CrossRefGoogle Scholar
  23. 23.
    Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657CrossRefGoogle Scholar
  24. 24.
    Nichols GA, Gullion CM, Koro CE et al (2004) The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 27:1879–1884CrossRefGoogle Scholar
  25. 25.
    Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18:891–975CrossRefGoogle Scholar
  26. 26.
    Rosenstock J, Perkovic V, Johansen OE et al (2018) Effect of Linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA.  https://doi.org/10.1001/jama.2018.18269 CrossRefGoogle Scholar
  27. 27.
    Rubler S, Dlugash J, Yuceoglu YZ et al (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602CrossRefGoogle Scholar
  28. 28.
    Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326CrossRefGoogle Scholar
  29. 29.
    Scirica BM, Braunwald E, Raz I et al (2014) Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation 130:1579–1588CrossRefGoogle Scholar
  30. 30.
    Wanner C, Marx N (2018) SGLT2 inhibitors: the future for treatment of type 2 diabetes mellitus and other chronic diseases. Diabetologia 61:2134–2139CrossRefGoogle Scholar
  31. 31.
    White WB, Cannon CP, Heller SR et al (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335CrossRefGoogle Scholar
  32. 32.
    Wiviott SD, Raz I, Bonaca MP et al (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380(4):347–357CrossRefGoogle Scholar
  33. 33.
    Zelniker TA, Wiviott SD, Raz I et al (2018) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet.  https://doi.org/10.1016/s0140-6736(18)32590-x CrossRefPubMedGoogle Scholar
  34. 34.
    Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117CrossRefGoogle Scholar
  35. 35.
    Zannad F, Cannon CP, Cushman WC et al (2015) Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet 385(9982):2067–2076CrossRefGoogle Scholar
  36. 36.
    Pfeffer MA, Claggett B, Diaz R et al (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373(23):2247–2257CrossRefGoogle Scholar
  37. 37.
    Holman RR, Bethel MA, Mentz RJ et al (2017) Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 377(13):1228–1239CrossRefGoogle Scholar
  38. 38.
    Roumie CL, Min JY, D’Agostino McGowan L et al (2017) Comparative safety of sulfonylurea and metformin monotherapy on the risk of heart failure: a cohort study. J Am Heart Assoc.  https://doi.org/10.1161/JAHA.116.005379 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Holman RR, Coleman RL, Chan JCN et al (2017) Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 5(11):877–886CrossRefGoogle Scholar
  40. 40.
    Chiasson JL, Josse RG, Gomis R et al (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290(4):486–494CrossRefGoogle Scholar
  41. 41.
    Packer M (2018) Is metformin beneficial for heart failure in patients with type 2 diabetes? Diabetes Res Clin Pract 136:168–170CrossRefGoogle Scholar
  42. 42.
    Crowley MJ, Diamantidis CJ, McDuffie JR et al (2017) Clinical outcomes of Metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: a systematic review. Ann Intern Med 166(3):191–200CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Medizinische Klinik I, Kardiologie, Angiologie und Internistische IntensivmedizinUniversitätsklinikum RWTH AachenAachenGermany

Personalised recommendations