Advertisement

Herz

pp 1–8 | Cite as

Mikrobiom, Diabetes und Herz: neue Zusammenhänge?

  • B. A. KappelEmail author
  • M. Lehrke
Schwerpunkt

Zusammenfassung

Patienten mit Typ-2-Diabetes haben ein hohes kardiovaskuläres Risiko. Die zugrunde liegenden Pathomechanismen sind bisher nicht hinreichend verstanden und die therapeutischen Möglichkeiten dementsprechend begrenzt. Das Darmmikrobiom könnte eine wichtige Rolle bei kardiometabolischen Erkrankungen spielen. Ein Ungleichgewicht in der Darmflora wurde bereits mit Insulinresistenz, Diabetes mellitus und kardiovaskulären Erkrankungen wie Atherosklerose und Herzinsuffizienz in Verbindung gebracht. Ein Teil der negativen kardiovaskulären Effekte des Typ-2-Diabetes mellitus könnte somit über die intestinale Bakterienflora vermittelt werden. Dieser Übersichtsartikel diskutiert spezifische, mit dem Darmmikrobiom assoziierte Mechanismen, welche sowohl beim Typ-2-Diabetes als auch bei Herz-Kreislauf-Erkrankungen moduliert sind. Auf der einen Seite wird dargestellt, wie Darmbakterien zu einer systemischen Low-grade-Inflammation beitragen können. Auf der anderen Seite wird aufgezeigt, wie das intestinale Mikrobiom als komplexes metabolisches Organ über die Produktion von bioaktiven Metaboliten den kardiometabolischen Phänotyp beeinflusst. Weitere Studien müssen zeigen, ob diese Mechanismen zu dem hohen kardiovaskulären Risiko bei Typ-2-Diabetes beitragen.

Schlüsselwörter

Darmmikrobiom Typ-2-Diabetes Herzinsuffizienz Kardiovaskuläre Erkrankungen Metabolismus 

Microbiome, diabetes and heart: a novel link?

Abstract

Patients with type 2 diabetes suffer from a high cardiovascular risk. The underlying pathomechanisms are not fully understood and treatment options are correspondingly limited. The gut microbiome could be a new important player in cardiometabolic diseases. Dysbiosis of the intestinal flora has been associated with insulin resistance, diabetes mellitus and cardiovascular diseases, such as atherosclerosis and heart failure. The negative cardiovascular effects of type 2 diabetes mellitus could therefore partly be mediated by gut microbiota. This review article discusses specific gut microbiome-associated mechanisms, which are modulated in both type 2 diabetes and cardiovascular diseases. It is presented how intestinal bacteria may contribute to systemic low-grade inflammation. Furthermore, it is shown how the intestinal microbiome as a complex metabolic organ is able to influence the cardiometabolic phenotype via production of bioactive metabolites. Further studies will have to demonstrate whether these mechanisms contribute to the high cardiovascular risk in type 2 diabetes.

Keywords

Gut microbiome Diabetes mellitus, type 2 Heart failure Cardiovascular disease Metabolism 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

B.A. Kappel gibt an, dass kein Interessenkonflikt besteht. M. Lehrke weist auf folgende Beziehungen hin: Erhalt von Forschungsunterstützung durch Böhringer Ingelheim, Novo Nordisk, MSD; Ausführung von Vortragstätigkeiten für Böhringer Ingelheim, MSD, AstraZeneca, BMS, Servier, Novo Nordisk, Sanofi, Amgen; Ausführung von Beratertätigkeiten für Böhringer Ingelheim, MSD, AstraZeneca, Novo Nordisk, Sanofi, Amgen, GSK, Roche.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Askoxylakis V et al (2010) Long-term survival of cancer patients compared to heart failure and stroke: a systematic review. BMC Cancer 10:105.  https://doi.org/10.1186/1471-2407-10-105 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution. Eur J Heart Fail 18:891–975.  https://doi.org/10.1093/eurheartj/ehw128 CrossRefPubMedGoogle Scholar
  3. 3.
    Bahtiyar G, Gutterman D, Lebovitz H (2016) Heart failure: a major cardiovascular complication of diabetes mellitus. Curr Diab Rep.  https://doi.org/10.1007/s11892-016-0809-4 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kappel B, Marx N, Federici M (2015) Oral hypoglycemic agents and the heart failure conundrum: lessons from and for outcome trials. Nutr Metab Cardiovasc Dis 25:697–705.  https://doi.org/10.1016/j.numecd.2015.06.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128.  https://doi.org/10.1056/NEJMoa1504720 CrossRefGoogle Scholar
  6. 6.
    Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657.  https://doi.org/10.1056/NEJMoa1611925 CrossRefPubMedGoogle Scholar
  7. 7.
    Marso SP, Daniels GH, Brown-Frandsen K et al (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322.  https://doi.org/10.1056/NEJMoa1603827 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nicholson J, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267.  https://doi.org/10.1126/science.1223813 CrossRefPubMedGoogle Scholar
  9. 9.
    Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. Plos Biol.  https://doi.org/10.1371/journal.pbio.1002533 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Turnbaugh PJ et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031.  https://doi.org/10.1038/nature05414 CrossRefGoogle Scholar
  11. 11.
    Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice gut microbiota from twins metabolism in mice. Science 341:1241214.  https://doi.org/10.1126/science.1241214 CrossRefPubMedGoogle Scholar
  12. 12.
    Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24:4–10.  https://doi.org/10.1097/MOG.0b013e3282f2b0e8 CrossRefPubMedGoogle Scholar
  13. 13.
    Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65.  https://doi.org/10.1038/nature08821 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Murgas Torrazza R, Neu J (2011) The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol 31(Suppl 1):S29–S34.  https://doi.org/10.1038/jp.2010.172 CrossRefPubMedGoogle Scholar
  15. 15.
    Nicholson JK, Wilson ID (2003) Opinion: understanding „global“ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2:668–676.  https://doi.org/10.1038/nrd1157 CrossRefPubMedGoogle Scholar
  16. 16.
    Karlsson FH, Fåk F, Nookaew I et al (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3.  https://doi.org/10.1038/ncomms2266 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jie Z, Xia H, Zhong S‑L et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845.  https://doi.org/10.1038/s41467-017-00900-1 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hoyles L et al (2018) Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med.  https://doi.org/10.1038/s41591-018-0061-3 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546.  https://doi.org/10.1038/nature12506 CrossRefGoogle Scholar
  20. 20.
    Pedersen HK et al (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535:376–381.  https://doi.org/10.1038/nature18646 CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63.  https://doi.org/10.1038/nature09922 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Henao-Mejia J, Elinav E, Jin C et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–185.  https://doi.org/10.1038/nature10809 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Suez J, Korem T, Zeevi D et al (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514:181–186.  https://doi.org/10.1038/nature13793 CrossRefPubMedGoogle Scholar
  24. 24.
    Blandino G et al (2016) Impact of gut microbiota on diabetes mellitus. Diabetes Metab.  https://doi.org/10.1016/j.diabet.2016.04.004 CrossRefPubMedGoogle Scholar
  25. 25.
    Frank DN, Amand ALS, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785.  https://doi.org/10.1073/pnas.0706625104 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bartolomaeus H et al (2018) The short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation.  https://doi.org/10.1161/CIRCULATIONAHA.118.036652 CrossRefPubMedGoogle Scholar
  27. 27.
    Goldsmith JR, Sartor RB (2014) The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol 49:785–798.  https://doi.org/10.1007/s00535-014-0953-z CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Karmarkar D, Rock KL (2013) Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response. Immunology 140:483–492.  https://doi.org/10.1111/imm.12159 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Parrinello CM, Lutsey PL, Ballantyne CM et al (2015) Six-year change in high-sensitivity C‑reactive protein and risk of diabetes, cardiovascular disease, and mortality. Am Heart J 170:380–389.e4.  https://doi.org/10.1016/j.ahj.2015.04.017 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131.  https://doi.org/10.1056/NEJMoa1707914 CrossRefPubMedGoogle Scholar
  31. 31.
    Lepper PM, Kleber ME, Grammer TB et al (2011) Lipopolysaccharide-binding protein (LBP) is associated with total and cardiovascular mortality in individuals with or without stable coronary artery disease--results from the Ludwigshafen Risk and Cardiovascular Health Study (LURIC). Atherosclerosis 219:291–297.  https://doi.org/10.1016/j.atherosclerosis.2011.06.001 CrossRefPubMedGoogle Scholar
  32. 32.
    Krogh-Madsen R et al (2008) Effect of short-term intralipid infusion on the immune response during low-dose endotoxemia in humans. Am J Physiol Endocrinol Metab.  https://doi.org/10.1152/ajpendo.00507.2007 CrossRefPubMedGoogle Scholar
  33. 33.
    Gnauck A, Lentle RG, Kruger MC (2016) The characteristics and function of bacterial lipopolysaccharides and their endotoxic potential in humans. Int Rev Immunol 35(3):189–218CrossRefGoogle Scholar
  34. 34.
    Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772.  https://doi.org/10.2337/db06-1491 CrossRefPubMedGoogle Scholar
  35. 35.
    Wiedermann CJ et al (1999) Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J Am Coll Cardiol.  https://doi.org/10.1016/S0735-1097(99)00448-9 CrossRefPubMedGoogle Scholar
  36. 36.
    Pussinen PJ, Tuomisto K, Jousilahti P et al (2007) Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler Thromb Vasc Biol.  https://doi.org/10.1161/ATVBAHA.106.138743 CrossRefPubMedGoogle Scholar
  37. 37.
    Szeto CC et al (2008) Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol.  https://doi.org/10.2215/CJN.03600807 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Creely SJ, McTernan PG, Kusminski CM et al (2006) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab.  https://doi.org/10.1152/ajpendo.00302.2006 CrossRefPubMedGoogle Scholar
  39. 39.
    Pussinen PJ et al (2011) Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care.  https://doi.org/10.2337/dc10-1676 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cuaz-Pérolin C, Billiet L, Baugé E et al (2008) Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE-/- mice. Arterioscler Thromb Vasc Biol.  https://doi.org/10.1161/ATVBAHA.107.155606 CrossRefPubMedGoogle Scholar
  41. 41.
    Malik TH, Cortini A, Carassiti D et al (2010) The alternative pathway is critical for pathogenic complement activation in endotoxin- and diet-induced atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation.  https://doi.org/10.1161/CIRCULATIONAHA.110.981365 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mehta NN et al (2010) Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes.  https://doi.org/10.2337/db09-0367 CrossRefPubMedGoogle Scholar
  43. 43.
    Michelsen KS, Wong MH, Shah PK et al (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.0403249101 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Shi H et al (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest.  https://doi.org/10.1172/JCI28898 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tsukumo DML, Carvalho-Filho MA, Carvalheira JBC et al (2007) Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56(8):1986–1998CrossRefGoogle Scholar
  46. 46.
    Herieka M, Faraj TA, Erridge C (2016) Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis.  https://doi.org/10.1016/j.numecd.2015.12.001 CrossRefPubMedGoogle Scholar
  47. 47.
    Ghoshal S, Witta J, Zhong J et al (2009) Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res.  https://doi.org/10.1194/jlr.M800156-JLR200 CrossRefPubMedGoogle Scholar
  48. 48.
    Erridge C, Attina T, Spickett CM, Webb DJ (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86:1286–1292CrossRefGoogle Scholar
  49. 49.
    Niebauer J, Volk HD, Kemp M et al (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353:1838–1842.  https://doi.org/10.1016/s0140-6736(98)09286-1 CrossRefPubMedGoogle Scholar
  50. 50.
    Cani PD, Possemiers S, Van De Wiele T et al (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut.  https://doi.org/10.1136/gut.2008.165886 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Amar J, Serino M, Lange C et al (2011) Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia.  https://doi.org/10.1007/s00125-011-2329-8 CrossRefPubMedGoogle Scholar
  52. 52.
    Burcelin R, Serino M, Chabo C et al (2013) Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab 15(Suppl 3):61–70CrossRefGoogle Scholar
  53. 53.
    Amar J, Chabo C, Waget A et al (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. Embo Mol Med 3:559–572.  https://doi.org/10.1002/emmm.201100159 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Amar J, Lange C, Payros G et al (2013) Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLoS ONE 8:e54461.  https://doi.org/10.1371/journal.pone.0054461 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of L‑carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585.  https://doi.org/10.1038/nm.3145 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhu W, Gregory JC, Org E et al (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell:1–14.  https://doi.org/10.1016/j.cell.2016.02.011 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wang Z et al (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585–1595.  https://doi.org/10.1016/j.cell.2015.11.055 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Organ CL et al (2016) Choline diet and its gut microbe-derived metabolite, trimethylamine N‑oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail 9:e2314.  https://doi.org/10.1161/CIRCHEARTFAILURE.115.002314 CrossRefPubMedGoogle Scholar
  59. 59.
    Ferguson JF (2013) Meat-loving microbes: Do steak-eating bacteria promote atherosclerosis? Circ Cardiovasc Genet 6:308–309.  https://doi.org/10.1161/CIRCGENETICS.113.000213 CrossRefPubMedGoogle Scholar
  60. 60.
    Trøseid M, Ueland T, Hov JR et al (2015) Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med 277:717–726.  https://doi.org/10.1111/joim.12328 CrossRefPubMedGoogle Scholar
  61. 61.
    Tang WHW, Wang Z, Fan Y et al (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64:1908–1914.  https://doi.org/10.1016/j.jacc.2014.02.617 CrossRefPubMedGoogle Scholar
  62. 62.
    Schuett K, Kleber ME, Scharnagl H et al (2017) Trimethylamine-N-oxide and heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 70:3202–3204.  https://doi.org/10.1016/j.jacc.2017.10.064 CrossRefPubMedGoogle Scholar
  63. 63.
    Shan Z et al (2017) Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr.  https://doi.org/10.3945/ajcn.117.157107 CrossRefPubMedGoogle Scholar
  64. 64.
    Kim MH, Kang SG, Park JH et al (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Baillieres Clin Gastroenterol 145:396–406.  https://doi.org/10.1053/j.gastro.2013.04.056 (e1–10)CrossRefGoogle Scholar
  65. 65.
    MacFabe DF et al (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav Brain Res 217:47–54.  https://doi.org/10.1016/j.bbr.2010.10.005 CrossRefPubMedGoogle Scholar
  66. 66.
    Priyadarshini M, Wicksteed B, Schiltz GE et al (2016) SCFA receptors in pancreatic β cells: novel diabetes targets? Trends Endocrinol Metab.  https://doi.org/10.1016/j.tem.2016.03.011 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kim CH, Park J, Kim M (2014) Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw 14:277–288.  https://doi.org/10.4110/in.2014.14.6.277 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Menzel T et al (2004) Butyrate inhibits leukocyte adhesion to endothelial cells via modulation of VCAM-1. Inflamm Bowel Dis 10:122–128CrossRefGoogle Scholar
  69. 69.
    Aguilar EC, Leonel AJ, Teixeira LG et al (2014) Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis 24:606–613.  https://doi.org/10.1016/j.numecd.2014.01.002 CrossRefPubMedGoogle Scholar
  70. 70.
    Wu H, Esteve E, Tremaroli V et al (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850–858.  https://doi.org/10.1038/nm.4345 CrossRefPubMedGoogle Scholar
  71. 71.
    Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T‑cell generation. Nature.  https://doi.org/10.1038/nature12726 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Wilck N, Matus MG, Kearney SM et al (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585–589.  https://doi.org/10.1038/nature24628 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ivanov II et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell.  https://doi.org/10.1016/j.cell.2009.09.033 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Cavallari JF, Denou E, Foley KP et al (2016) Different Th17 immunity in gut, liver, and adipose tissues during obesity: the role of diet, genetics, and microbes. Gut Microbes 7:82–89.  https://doi.org/10.1080/19490976.2015.1127481 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Livanos AE, Greiner TU, Vangay P et al (2016) Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Rev Microbiol 1:16140.  https://doi.org/10.1038/nmicrobiol.2016.140 CrossRefGoogle Scholar
  76. 76.
    Gong F, Wu J, Zhou P et al (2016) Interleukin-22 might act as a double-edged sword in type 2 diabetes and coronary artery disease. Mediators Inflamm 2016:8254797.  https://doi.org/10.1155/2016/8254797 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Abdel-Moneim A, Bakery HH, Allam G (2018) The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother 101:287–292.  https://doi.org/10.1016/j.biopha.2018.02.103 CrossRefPubMedGoogle Scholar
  78. 78.
    Myers JM, Cooper LT, Kem DC et al (2016) Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight 1.  https://doi.org/10.1172/jci.insight.85851 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Li J et al (2010) The treg/Th17 imbalance in patients with idiopathic dilated cardiomyopathy. Scand J Immunol 71:298–303.  https://doi.org/10.1111/j.1365-3083.2010.02374.x CrossRefPubMedGoogle Scholar
  80. 80.
    Ridlon JM, Kang D‑J, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res.  https://doi.org/10.1194/jlr.R500013-JLR200 CrossRefPubMedGoogle Scholar
  81. 81.
    Postler TS, Ghosh S (2017) Understanding the Holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metab 26(1):110–130CrossRefGoogle Scholar
  82. 82.
    Ryan PM, Stanton C, Caplice NM (2017) Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions. Diabetol Metab Syndr 9:1–12.  https://doi.org/10.1186/s13098-017-0299-9 CrossRefGoogle Scholar
  83. 83.
    Chávez-Talavera O et al (2017) Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Baillieres Clin Gastroenterol.  https://doi.org/10.1053/j.gastro.2017.01.055 CrossRefGoogle Scholar
  84. 84.
    Charach G, Argov O, Geiger K et al (2018) Diminished bile acids excretion is a risk factor for coronary artery disease: 20-year follow up and long-term outcome. Therap Adv Gastroenterol 11:1756283X17743420.  https://doi.org/10.1177/1756283X17743420 CrossRefPubMedGoogle Scholar
  85. 85.
    Jadhav K, Xu Y, Xu Y et al (2018) Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Mol Metab 9:131–140.  https://doi.org/10.1016/j.molmet.2018.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Bozadjieva N, Heppner KM, Seeley RJ (2018) Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery. Diabetes.  https://doi.org/10.2337/dbi17-0007 CrossRefPubMedGoogle Scholar
  87. 87.
    Vrieze A et al (2014) Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 60:824–831.  https://doi.org/10.1016/j.jhep.2013.11.034 CrossRefPubMedGoogle Scholar
  88. 88.
    Huffman KM, Shah SH, Stevens RD et al (2009) Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care.  https://doi.org/10.2337/dc08-2075 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab.  https://doi.org/10.1016/j.cmet.2009.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wang TJ et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med.  https://doi.org/10.1038/nm.2307 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Bhattacharya S, Granger CB, Craig D et al (2014) Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis.  https://doi.org/10.1016/j.atherosclerosis.2013.10.036 CrossRefPubMedGoogle Scholar
  92. 92.
    Shah SH et al (2012) Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am Heart J.  https://doi.org/10.1016/j.ahj.2012.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Neinast MD, Jang C, Hui S et al (2018) Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab.  https://doi.org/10.1016/j.cmet.2018.10.013 CrossRefPubMedGoogle Scholar
  94. 94.
    Sun H, Olson KC, Gao C et al (2016) Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133:2038–2049.  https://doi.org/10.1161/CIRCULATIONAHA.115.020226 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Kappel BA et al (2017) Effect of Empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation 136:969–972.  https://doi.org/10.1161/CIRCULATIONAHA.117.029166 CrossRefPubMedGoogle Scholar
  96. 96.
    Lehrke M, Marx N (2011) Cardiovascular effects of incretin-based therapies. Rev Diabet Stud 8:382–391.  https://doi.org/10.1900/RDS.2011.8.382 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Grasset E, Puel A, Charpentier J et al (2017) A specific gut Microbiota Dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism. Cell Metab 25:1075–1090.e5.  https://doi.org/10.1016/j.cmet.2017.04.013 CrossRefPubMedGoogle Scholar
  98. 98.
    Chimerel C et al (2014) Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep 9:1202–1208.  https://doi.org/10.1016/j.celrep.2014.10.032 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Korpela K, Salonen A, Virta LJ et al (2016) Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 7:1–8.  https://doi.org/10.1038/ncomms10410 CrossRefGoogle Scholar
  100. 100.
    Saari A et al (2015) Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatr Electron Pages 135:617–626.  https://doi.org/10.1542/peds.2014-3407 CrossRefGoogle Scholar
  101. 101.
    Surawicz CM, Brandt LJ, Binion DG et al (2013) Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108:478–498.  https://doi.org/10.1038/ajg.2013.4 (quiz 499)CrossRefPubMedGoogle Scholar
  102. 102.
    Borody TJ, Paramsothy S, Agrawal G (2013) Fecal microbiota transplantation: indications, methods, evidence, and future directions. Curr Gastroenterol Rep 15:337.  https://doi.org/10.1007/s11894-013-0337-1 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Vrieze A et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Baillieres Clin Gastroenterol 143:913–916.e7.  https://doi.org/10.1053/j.gastro.2012.06.031 CrossRefGoogle Scholar
  104. 104.
    Cani PD, Neyrinck AM, Fava F et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383.  https://doi.org/10.1007/s00125-007-0791-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Medizinische Klinik I – Kardiologie, Angiologie und Internistische IntensivmedizinUniversitätsklinikum Aachen, RWTH AachenAachenDeutschland

Personalised recommendations