Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biomarkers in primary prevention

Meaningful diagnosis based on biomarker scores?

Biomarker in der Primärprävention

Aussagekräftige Diagnose anhand von Biomarkerwerten?

  • 97 Accesses

Abstract

Cardiovascular (CV) risk assessment is based on the utilization of risk scores, enabling clinicians to estimate an individual’s risk to develop CV pathologies and events. Such risk scores comprise classic CV risk factors such as smoking, diabetes, hypertension, and blood cholesterol levels. Recently, other CV biomarkers such as cardiac troponins have been suggested and evaluated as alternative biomarkers not only in the acute diagnostic setting of myocardial infarction, but also as markers for risk stratification in the general population. In this review, we summarize the current knowledge on biomarkers in the field of primary prevention in cardiovascular disease (CVD). Furthermore, we present potential alternative biomarker-based strategies for CV risk assessment. In this respect we provide an outlook on the potential use of genomic variation as well as circulating non-coding RNAs to complement current risk assessment strategies so as to further personalize risk stratification in CVD.

Zusammenfassung

Für die Primärprävention kardiovaskulärer Erkrankungen ist eine detaillierte Risikoabschätzung durch klinisch tätige Ärzte in Bezug auf die Entwicklung kardiovaskulärer Erkrankungen und Ereignisse wichtig. Zu diesem Zweck werden sog. Risikoscores genutzt, welche auf den klassischen kardiovaskulären Risikofaktoren wie Rauchen, Diabetes, Bluthochdruck und Cholesterin basieren. In den vergangenen Jahren wurden andere kardiovaskuläre Biomarker wie kardiale Troponine als weitere Faktoren nicht nur bei der akuten Diagnostik eines Herzinfarkts, sondern auch für die Risikostratifizierung in der Allgemeinbevölkerung vorgeschlagen und bewertet. Dieser Artikel fasst die aktuellen Erkenntnisse zu Biomarkern im Bereich der Primärprävention bei Herz-Kreislauf-Erkrankungen zusammen. Darüber hinaus werden perspektivisch alternative biomarkerbasierte Strategien wie die potenzielle Nutzung von genomischen Variationen und zirkulierenden nichtkodierenden RNA-Molekülen zur Vervollständigung der Bewertung des individuellen kardiovaskulären Risikos erörtert.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    World Health Organization http://www.emro.who.int/about-who/public-health-functions/health-promotion-disease-prevention.html. Accessed: 1 Nov 2019

  2. 2.

    Kannel WB, Dawber TR, Kagan A et al (1961) Factors of risk in the development of coronary heart disease—six-year follow-up experience. Ann Intern Med 55:33. https://doi.org/10.7326/0003-4819-55-1-33

  3. 3.

    Arnett DK, Blumenthal RS, Albert MA et al (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 140:e596–e646. https://doi.org/10.1161/CIR.0000000000000678

  4. 4.

    Piepoli MF, Hoes AW, Agewall S et al (2016) 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 37:2315–2381. https://doi.org/10.1093/eurheartj/ehw106

  5. 5.

    Pencina MJ, Navar AM, Wojdyla D et al (2019) Quantifying importance of major risk factors for coronary heart disease. Circulation 139:1603–1611. https://doi.org/10.1161/CIRCULATIONAHA.117.031855

  6. 6.

    Graham I, Shear C, De Graeff P et al (2018) New strategies for the development of lipid-lowering therapies to reduce cardiovascular risk. Eur Heart J Cardiovasc Pharmacother 4:119–127. https://doi.org/10.1093/ehjcvp/pvx031

  7. 7.

    McNeil JJ, Wolfe R, Woods RL et al (2018) Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N Engl J Med 379:1509–1518. https://doi.org/10.1056/NEJMoa1805819

  8. 8.

    Group BDW (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95. https://doi.org/10.1067/mcp.2001.113989

  9. 9.

    D’Agostino RB, Vasan RS, Pencina MJ et al (2008) General cardiovascular risk profile for use in primary care. Circulation 117:743–753. https://doi.org/10.1161/CIRCULATIONAHA.107.699579

  10. 10.

    Authors/Task Force Members MF, Piepoli MF, Hoes AW et al (2016) 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol 23:NP1–NP96. https://doi.org/10.1177/2047487316653709

  11. 11.

    Thygesen K, Alpert JS, Jaffe AS et al (2012) Third universal definition of myocardial infarction. J Am Coll Cardiol 60:1581–1598. https://doi.org/10.1016/J.JACC.2012.08.001

  12. 12.

    Roffi M, Patrono C, Collet J‑P et al (2016) 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 37:267–315. https://doi.org/10.1093/eurheartj/ehv320

  13. 13.

    Aengevaeren VL, Hopman MTE, Thompson PD et al (2019) Exercise-induced cardiac Troponin I increase and incident mortality and cardiovascular events. Circulation 140:804–814. https://doi.org/10.1161/CIRCULATIONAHA.119.041627

  14. 14.

    Blankenberg S, Salomaa V, Makarova N et al (2016) Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium. Eur Heart J 37:2428–2437. https://doi.org/10.1093/eurheartj/ehw172

  15. 15.

    Ford I, Shah ASV, Zhang R et al (2016) High-sensitivity cardiac troponin, statin therapy, and risk of coronary heart disease. J Am Coll Cardiol 68:2719–2728. https://doi.org/10.1016/j.jacc.2016.10.020

  16. 16.

    Neumann JT, Twerenbold R, Ojeda F et al (2019) Application of high-sensitivity troponin in suspected myocardial infarction. N Engl J Med 380:2529–2540. https://doi.org/10.1056/NEJMoa1803377

  17. 17.

    Sigurdardottir FD, Lyngbakken MN, Holmen OL et al (2018) Relative prognostic value of cardiac Troponin I and C‑reactive protein in the general population (from the Nord-Trøndelag health [HUNT] study). Am J Cardiol 121:949–955. https://doi.org/10.1016/j.amjcard.2018.01.004

  18. 18.

    Blankenberg S, Zeller T, Saarela O et al (2010) Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation 121:2388–2397. https://doi.org/10.1161/CIRCULATIONAHA.109.901413

  19. 19.

    Ganz P, Heidecker B, Hveem K et al (2016) Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA 315:2532. https://doi.org/10.1001/jama.2016.5951

  20. 20.

    Jacquet S, Yin X, Sicard P et al (2009) Identification of cardiac myosin-binding protein C as a candidate biomarker of myocardial infarction by proteomics analysis. Mol Cell Proteomics 8:2687–2699. https://doi.org/10.1074/mcp.M900176-MCP200

  21. 21.

    Marjot J, Kaier TE, Martin ED et al (2017) Quantifying the release of biomarkers of myocardial necrosis from cardiac myocytes and intact myocardium. Clin Chem 63:990–996. https://doi.org/10.1373/clinchem.2016.264648

  22. 22.

    Kaier TE, Twerenbold R, Puelacher C et al (2017) Direct comparison of cardiac myosin-binding protein C with cardiac troponins for the early diagnosis of acute myocardial infarction. Circulation 136:1495–1508. https://doi.org/10.1161/CIRCULATIONAHA.117.028084

  23. 23.

    Baker JO, Tyther R, Liebetrau C et al (2015) Cardiac myosin-binding protein C: a potential early biomarker of myocardial injury. Basic Res Cardiol 110:23. https://doi.org/10.1007/s00395-015-0478-5

  24. 24.

    Schulte C, Barwari T, Joshi A et al (2019) Comparative analysis of circulating noncoding RNas versus protein biomarkers in the detection of myocardial injury. Circ Res 125:328–340. https://doi.org/10.1161/CIRCRESAHA.119.314937

  25. 25.

    Anand A, Chin C, Shah ASV et al (2018) Cardiac myosin-binding protein C is a novel marker of myocardial injury and fibrosis in aortic stenosis. Heart 104:1101–1108. https://doi.org/10.1136/heartjnl-2017-312257

  26. 26.

    Erdmann J, Kessler T, Munoz Venegas L, Schunkert H (2018) A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res 114:1241–1257. https://doi.org/10.1093/cvr/cvy084

  27. 27.

    Holdt LM, Stahringer A, Sass K et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429. https://doi.org/10.1038/ncomms12429

  28. 28.

    Tikkanen E, Havulinna AS, Palotie A et al (2013) Genetic risk prediction and a 2-stage risk screening strategy for coronary heart disease. Arterioscler Thromb Vasc Biol 33:2261–2266. https://doi.org/10.1161/ATVBAHA.112.301120

  29. 29.

    Ganna A, Magnusson PKE, Pedersen NL et al (2013) Multilocus genetic risk scores for coronary heart disease prediction. Arterioscler Thromb Vasc Biol 33:2267–2272. https://doi.org/10.1161/ATVBAHA.113.301218

  30. 30.

    Rao AS, Knowles JW (2019) Polygenic risk scores in coronary artery disease. Curr Opin Cardiol 34:435–440. https://doi.org/10.1097/HCO.0000000000000629

  31. 31.

    Khera AV, Chaffin M, Aragam KG et al (2018) Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50:1219–1224. https://doi.org/10.1038/s41588-018-0183-z

  32. 32.

    Inouye M, Abraham G, Nelson CP et al (2018) Genomic risk prediction of coronary artery disease in 480,000 adults. J Am Coll Cardiol 72:1883–1893. https://doi.org/10.1016/j.jacc.2018.07.079

  33. 33.

    Natarajan P, Young R, Stitziel NO et al (2017) Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from Statin therapy in the primary prevention setting. Circulation 135:2091–2101. https://doi.org/10.1161/CIRCULATIONAHA.116.024436

  34. 34.

    Clancy S, Brown W (2008) Translation: DNA to mRNA to Protein. Nat Educ 1(1):101

  35. 35.

    Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 80(291):1304–1351. https://doi.org/10.1126/science.1058040

  36. 36.

    Ransohoff JD, Wei Y, Khavari PA (2018) The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 19:143–157. https://doi.org/10.1038/nrm.2017.104

  37. 37.

    Williamson L, Saponaro M, Boeing S et al (2017) UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell 168:843–855.e13. https://doi.org/10.1016/J.CELL.2017.01.019

  38. 38.

    ES, Costa MC, Kurc S et al (2018) The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin 39:1085–1099. https://doi.org/10.1038/aps.2018.35

  39. 39.

    Condorelli G, Latronico MVG, Cavarretta E (2014) microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol 63:2177–2187. https://doi.org/10.1016/j.jacc.2014.01.050

  40. 40.

    Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008. https://doi.org/10.1073/pnas.1019055108

  41. 41.

    Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433. https://doi.org/10.1038/ncb2210

  42. 42.

    Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233. https://doi.org/10.1093/nar/gkr254

  43. 43.

    Zampetaki A, Willeit P, Tilling L et al (2012) Prospective study on circulating microRNas and risk of myocardial infarction. J Am Coll Cardiol 60:290–299. https://doi.org/10.1016/J.JACC.2012.03.056

  44. 44.

    Jansen F, Yang X, Proebsting S et al (2014) MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc 3:e1249. https://doi.org/10.1161/JAHA.114.001249

  45. 45.

    Schulte C, Molz S, Appelbaum S et al (2015) miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS ONE 10:e145930. https://doi.org/10.1371/journal.pone.0145930

  46. 46.

    Bye A, Røsjø H, Nauman J et al (2016) Circulating microRNAs predict future fatal myocardial infarction in healthy individuals—The HUNT study. J Mol Cell Cardiol 97:162–168. https://doi.org/10.1016/j.yjmcc.2016.05.009

  47. 47.

    van Rooij E, Marshall WS, Olson EN (2008) Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res 103:919–928. https://doi.org/10.1161/CIRCRESAHA.108.183426

  48. 48.

    Schulte C, Westermann D, Blankenberg S, Zeller T (2015) Diagnostic and prognostic value of circulating microRNAs in heart failure with preserved and reduced ejection fraction. World J Cardiol 7:843–860. https://doi.org/10.4330/wjc.v7.i12.843

  49. 49.

    Schulte C, Zeller T (2015) microRNA-based diagnostics and therapy in cardiovascular disease-Summing up the facts. Cardiovasc Diagn Ther 5:17–36. https://doi.org/10.3978/j.issn.2223-3652.2014.12.03

  50. 50.

    Viereck J, Thum T (2017) Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury. Circ Res 120:381–399. https://doi.org/10.1161/CIRCRESAHA.116.308434

Download references

Funding

C.S. is the recipient of a research fellowship by the Deutsche Forschungsgemeinschaft (DFG) (SCHU 2983/1‑1 and SCHU 2983/2-1). T.Z. is funded by the German Centre for Cardiovascular Research (DZHK) (81Z0710102).

Author information

Correspondence to Tanja Zeller PhD.

Ethics declarations

Conflict of interest

C. Schulte and T. Zeller declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schulte, C., Zeller, T. Biomarkers in primary prevention. Herz 45, 10–16 (2020). https://doi.org/10.1007/s00059-019-04874-2

Download citation

Keywords

  • Blood lipids
  • Risk factors
  • Cardiovascular disease
  • Troponin
  • Risk assessment

Schlüsselwörter

  • Blutfette
  • Risikofaktoren
  • Herz-Kreislauf-Erkrankungen
  • Troponin
  • Risikoabschätzung