Cardiac amyloidosis: in search of the ideal diagnostic tool
Abstract
Background
Cardiac amyloidosis (CA) is due to amyloid deposition in the myocardium. Transthyretin (ATTR) and light-chain (AL) amyloidosis are the main types of CA. Here, we present the clinical and imaging findings in patients with CA and discuss the controversies with the aim of finding the ideal diagnostic tool.
Methods
Ten patients suspected of having CA on the basis of electrocardiographic (ECG) and echocardiographic findings were evaluated via cardiovascular magnetic resonance imaging (CMR; 1.5 T) using cine, late gadolinium enhancement (LGE), T1, T2 mapping, and extracellular volume fraction. N‑terminal pro-B-type natriuretic peptide (NT-proBNP) levels were also assessed in all patients.
Results
All ten patients had an echocardiogram suggestive of CA. The CMR study documented ventricular hypertrophy leading to small ventricular volumes, as assessed by echocardiography. Diffuse subendocardial LGE, supporting the diagnosis of CA, was identified in all except one patient, who had subepicardial LGE due to myocarditis that was verified by endomyocardial biopsy (EMB). Right ventricular (RV) involvement was identified in four of the ten patients, whose condition deteriorated rapidly over the next 6 months. The NT-proBNP levels were >332 pg/ml in all except two patients. Light-chain amyloidosis was identified via fat tissue biopsy in two patients and through renal biopsy in one patient. In two patients with positive technetium-99m, EMB confirmed the diagnosis of ATTR.
Conclusion
NT-proBNP may be a sensitive but nonspecific biomarker for assessing CA. However, CMR is the only imaging modality that can assess the pathophysiologic background of cardiac hypertrophy and the severity of CA, irrespective of NT-proBNP level.
Keywords
Cardiac amyloidosis Cardiovascular magnetic resonance imaging N‑terminal pro-BNP Electrocardiography EchocardiographyAbbreviations
- CA
Cardiac amyloidosis
- CMR
Cardiovascular magnetic resonance
- ECG
Electrocardiogram
- ECV
Extracellular volume fraction
- LGE
Late gadolinium enhancement
- LVEF
Left ventricular ejection fraction
- RVEF
Right ventricular ejection fraction
Kardiale Amyloidose: Suche nach dem idealen diagnostischen Verfahren
Zusammenfassung
Hintergrund
Der kardialen Amyloidose (CA) liegt eine Amyloidablagerung im Myokard zugrunde. Transthyretin- (ATTR) und Leichtketten(AL)-Amyloidose sind die Hauptursachen der CA. Ziel der Autoren war es, klinische und bildgebende Befunde bei Patienten mit CA zu präsentieren und die entsprechenden Kontroversen mit dem Ziel darzustellen, das ideale Diagnoseinstrument zu erkennen.
Methoden
Es wurden 10 Patienten, bei denen die Verdachtsdiagnose CA aufgrund von Elektrokardiogramm (EKG) und Echokardiographie bestand, mittels kardiovaskulärer Magnetresonanzbildgebung (CMR; 1,5 T) mit Cine-Funktion, Beurteilung des Late Gadolinium Enhancement (LGE), T1-, T2-Mapping und Bestimmung der extrazellulären Volumenfraktion untersucht. Der Wert für NT-proBNP („N-terminal pro-B-type natriuretic peptide“) wurde ebenfalls bei allen gemessen.
Ergebnisse
Bei allen (n = 10) Patienten gab es in der Echokardiographie Hinweise auf CA. In der CMR wurde eine ventrikuläre Hypertrophie dokumentiert, die zu kleinen ventrikulären Volumina führte, was durch die Echokardiographie festgestellt wurde. Diffuses subendokardiales LGE, das für die Diagnose einer CA spricht, wurde bei allen mit Ausnahme eines Patienten, der subepikardiales LGE aufgrund einer Myokarditis aufwies, durch eine Endomyokardbiopsie (EMB) bestätigt. Eine rechtsventrikuläre (RV-)Beteiligung wurde bei 4/10 Patienten festgestellt, deren Zustand sich innerhalb der nächsten 6 Monate rasch verschlechterte. Der NT-proBNP-Spiegel war insgesamt >332 pg/ml, mit Ausnahme von 2 Patienten. Eine AL-Amyloidose wurde durch Fettgewebebiopsie bei 2/10 und durch Nierenbiopsie bei 1/10 Patienten identifiziert. Bei 2/10 Patienten mit positiver 99mTc-Szintigraphie wurde die Diagnose einer ATTR-Amyloidose durch die EMB bestätigt.
Schlussfolgerung
NT-proBNP ist möglicherweise ein sensitiver, aber nicht spezifischer Biomarker für die Beurteilung einer CA. Die CMR ist jedoch das einzige Bildgebungsverfahren, mit dem der pathophysiologische Hintergrund der Herzhypertrophie und der Schweregrad der CA unabhängig von den NT-proBNP-Spiegeln beurteilt werden kann.
Schlüsselwörter
Kardiale Amyloidose Kardiovaskuläre Magnetresonanztomographie N‑terminales proBNP Elektrokardiogramm EchokardiographieNotes
Author Contribution
All authors read and approved the final manuscript. S.M: CMR scanning evaluation and manuscript writing; VV: Echo assessment and writing; A.N: Cardiac data assessment and writing; RV: Cardiac, echo and nuclear data assessment and writing; I.I: Cardiac data assessment and writing; MT: Biopsy data assessment and writing; E.K: Biopsy assessment; I.P: Coordination of echo assessment, manuscript writing; G.M.M: CMR image analysis and manuscript writing; M.N: Coordination of manuscript writing; G.K: Coordination of manuscript writing.
Compliance with ethical guidelines
Conflict of interest
S.I. Mavrogeni, V. Vartela, A. Ntalianis, R. Vretou, I. Ikonomidis, M. Tselegkidou, I. Paraskevaidis, G. Markousis-Mavrogenis, M. Noutsias, A. Rigopoulos, G. Kolovou and E. Kastritis declare that they have no competing interests.
All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards and have been approved by the Onassis Cardiac Surgery Center ethics committee. Informed consent was obtained from all individual participants included in the study.
References
- 1.Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda S et al (2007) A primer of amyloid nomenclature. Amyloid 14(3):179–183CrossRefGoogle Scholar
- 2.Buxbaum JN (2004) The systemic amyloidoses. Curr Opin Rheumatol 16(1):67–75CrossRefGoogle Scholar
- 3.Mohammed SF, Mirzoyev SA, Edwards WD et al (2014) Left ventricular amyloi deposition in patients with heart failure and preserved ejection fraction. Jacc Heart Fail 2(2):113–122CrossRefGoogle Scholar
- 4.Java AP, Greason KL, Dispenzieri A, Grogan M, King KS, Maleszewski JJ, Daly RC, Eleid MF, Pochettino A, Schaff HV (2018) Aortic valve replacement in patients with amyloidosis. J Thorac Cardiovasc Surg 156(1):98–103CrossRefGoogle Scholar
- 5.Maurer MS (2015) Noninvasive identification of ATTRwt cardiac amyloid: the re-emergence of nuclear cardiology. Am J Med 128(12):1275–1280CrossRefGoogle Scholar
- 6.Quarta CC, Buxbaum JN, Shah AM et al (2015) The amyloidogenic V122I transthyretin variant in elderly black Americans. N Engl J Med 372(1):21–29CrossRefGoogle Scholar
- 7.Rapezzi C, Lorenzini M, Longhi S et al (2015) Cardiac amyloidosis: the great pretender. Heart Fail Rev 20(2):117–124CrossRefGoogle Scholar
- 8.Westphal JG, Rigopoulos AG, Bakogiannis C, Ludwig SE, Mavrogeni S, Bigalke B, Doenst T, Pauschinger M, Tschope C, Schulze PC, Noutsias M (2017) The MOGE(S) classification for cardiomyopathies: current status and future outlook. Heart Fail Rev 22((6):743–752CrossRefGoogle Scholar
- 9.Bokhari S, Castaρo A, Pozniakoff T et al (2013) 99mTc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 6(2):195–201CrossRefGoogle Scholar
- 10.Maurer MS, Grogan DR, Judge DP et al (2015) Tafamidis in transthyretin amyloid cardiomyopathy: effects on transthyretin stabilization and clinical outcomes. Circ Heart Fail 8(3:519–526CrossRefGoogle Scholar
- 11.Noutsias M, Seeberg B, Schultheiss HP, Kühl U (1999) Expression of cell adhesion molecules in dilated cardiomyopathy: evidence for endothelial activation in inflammatory cardiomyopathy. Circulation 99(16):2124–2131CrossRefGoogle Scholar
- 12.Cheng Z, Zhu K, Tian Z, Zhao D, Cui Q, Fang Q (2013) The findings of electro-cardiography in patients with cardiac amyloidosis. Ann Noninvasive Electrocardiol 18(2):157–162CrossRefGoogle Scholar
- 13.Ton V, Mukherjee M, Judge DP (2014) Transthyretin cardiac amyloidosis: pathogenesis, treatments, and emerging role in heart failure with preserved ejection fraction. Clin Med Insights Cardiol 8(Suppl 1):39–44PubMedGoogle Scholar
- 14.Ruberg FL, Transthyretin BJL (2012) (TTR) cardiac amyloidosis. Circulation 126(10):1286–1300CrossRefGoogle Scholar
- 15.Gertz MA, Benson MD, Dyck PJ, Grogan M, Coelho T, Cruz M et al (2015) Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol 66(21):2451–2466CrossRefGoogle Scholar
- 16.Grogan M, Dispenzieri A, Gertz MA (2017) Light-chain cardiac amyloidosis: strategies to promote early diagnosis and cardiac response. Heart 103(14):1065–1072CrossRefGoogle Scholar
- 17.Desport E, Bridoux F, Sirac C, Delbes S, Bender S, Fernandez B et al (2012) AL amyloidosis. Orphanet Journal of Rare Diseases 7:54CrossRefGoogle Scholar
- 18.Mollee P, Renaut P, Gottlieb D, Goodman H (2014) How to diagnose amyloidosis. Intern Med J 44(1):7–17CrossRefGoogle Scholar
- 19.Sanchorawala V (2006) Light-chain (AL) amyloidosis: diagnosis and treatment. Clin J Am Soc Nephrol 1(6):1331–1341CrossRefGoogle Scholar
- 20.Marcoux J, Mangione PP, Porcari R, Degiacomi MT, Verona G, Taylor GW et al (2015) A novel mechano-enzymatic cleavage mechanism underlies transthyretin amyloidogenesis. EMBO Mol Med 7(10):1337–1349CrossRefGoogle Scholar
- 21.Loo D, Mollee PN, Renaut P, Hill MM (2011) Proteomics in molecular diagnosis: typing of amyloidosis. J Biomed Biotechnol 2011:754109CrossRefGoogle Scholar
- 22.Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM et al (2013) Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 6:488–497CrossRefGoogle Scholar
- 23.Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK et al (2014) Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 7(2):157–165CrossRefGoogle Scholar
- 24.Banypersad SM, Sado DM, Flett AS, Gibbs SDJ, Pinney JH, Maestrini V et al (2013) Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 6:34–39CrossRefGoogle Scholar
- 25.Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM et al (2015) Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 132:1570–1579CrossRefGoogle Scholar
- 26.Fontana M, Banypersad SM, Treibel TA, Abdel-Gadir A, Maestrini V, Lane T et al (2015) Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: a cardiac MR imaging study. Radiology 277:388–397CrossRefGoogle Scholar
- 27.Treibel TA, Fontana M, Gilbertson JA, Castelletti S, White SK, Scully PR et al (2016) Occult transthyretin cardiac amyloid in severe calcific aortic stenosis: prevalence and prognosis in patients undergoing surgical aortic valve replacement. Circ Cardiovasc Imaging 9(8):eoo5066CrossRefGoogle Scholar
- 28.Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, Mascherbauer J, Nezafat R, Salerno M, Schelbert EB, Taylor AJ, Thompson R, Ugander M, van Heeswijk RB, Friedrich MG (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19(1):75CrossRefGoogle Scholar
- 29.Lin L, Li X, Feng J, Shen KN, Tian Z, Sun J, Mao YY, Cao J, Jin ZY, Li J, Selvanayagam JB, Wang YN (2018) The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis. J Cardiovasc Magn Reson 20(1):2CrossRefGoogle Scholar
- 30.Wan K, Sun J, Han Y, Luo Y, Liu H, Yang D, Cheng W, Zhang Q, Zeng Z, Chen Y (2018) Right ventricular involvement evaluated by cardiac magnetic resonance imaging predicts mortality in patients with light chain amyloidosis. Heart Vessels 33(2):170–179CrossRefGoogle Scholar
- 31.Porciani MC, Lilli A, Perfetto F, Cappelli F, Massimiliano Rao C, Del Pace S et al (2009) Tissue Doppler and strain imaging: a new tool for early detection of cardiac amyloidosis. Amyloid 16:63–70CrossRefGoogle Scholar
- 32.Koyama J, Ray-Sequin PA, Falk RH (2003) Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation 107:2446–2452CrossRefGoogle Scholar
- 33.Baccouche H, Maunz M, Beck T, Gaa E, Banzhaf M, Knayer U et al (2012) Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography 29:668–677CrossRefGoogle Scholar
- 34.Kotecha T, Martinez-Naharro A, Treibel TA, Francis R, Nordin S, Abdel-Gadir A, Knight DS, Zumbo G, Rosmini S et al (2017) Multiparametric mapping to understand pathophysiology in cardiac amyloidosis. Heart 103(Suppl 1):A1–A25CrossRefGoogle Scholar