Advertisement

Herz

, Volume 44, Issue 7, pp 574–585 | Cite as

Diagnostik der Mitralinsuffizienz

Wie viel und welche Quantifizierung brauchen wir?
  • F. KreidelEmail author
  • T. Ruf
  • A. Tamm
  • M. Geyer
  • T. Emrich
  • R. S. von Bardeleben
Schwerpunkt

Zusammenfassung

Eine hochgradige Mitralinsuffizienz (MI) ist mit erhöhter Morbidität und Mortalität vergesellschaftet. Die korrekte Evaluation von Ätiologie, Pathomechanismus und Schweregrad ist entsprechend entscheidend für eine optimale Behandlung. Die Echokardiographie ist die wesentliche Diagnosemodalität im klinischen Alltag; sie ermöglicht die Bestimmung des Schweregrads häufig bereits mittels einfach zu erhebender, qualitativer Parameter. Ergänzend bietet sie verschiedene Verfahren, um die hämodynamische Bedeutung der MI zu quantifizieren. Der am besten mit klinischen Ereignissen korrelierte quantitative Parameter ist die EROA („effective regurgitant orifice area“); ihre Berechnung wird in amerikanischen und europäischen Leitlinien empfohlen. Gleichwohl besteht Uneinigkeit über die Grenzwerte für eine hochgradige, sekundäre MI. Die Evaluation einer MI muss immer auch die Beurteilung der angrenzenden Herzhöhlen beinhalten – einerseits, um die Auswirkung der MI auf Größe und Funktion beurteilen zu können, andererseits auch, weil die Bedeutung der quantitativen Parameter von Ventrikelgröße und Auswurfvolumen abhängig ist. Neue 3‑D-echokardiographische Ansätze zur Quantifizierung der MI haben in Studien überzeugende Ergebnisse gezeigt, ihre Parameter sind allerdings noch nicht hinreichend klinisch validiert. Als Alternative zur Echokardiographie hat sich für ausgewählte Indikationen die kardiale Magnetresonanztomographie (MRT) als systematische und untersucherunabhängige Methode zur Quantifizierung der MI bewährt.

Schlüsselwörter

Mitralklappe EROA Regurgitationsvolumen Echokardiographie Kardiale Magnetresonanztomographie 

Abkürzungen

EROA

Effektive Regurgitationsöffnungsfläche

LVEDV

Linksventrikuläres enddiastolisches Volumen

LVEF

Linksventrikuläre Ejektionsfraktion

LVESV

Linksventrikuläres endsystolisches Volumen

MI

Mitralinsuffizienz

PISA

„Proximal isovelocity surface area“

RF

Regurgitationsfraktion

RVol

Regurgitationsvolumen

SV

Schlagvolumen

TEE

Transösophageale Echokardiographie

TSV

Totales Schlagvolumen

TTE

Transthorakale Echokardiographie

VCA

Vena-contracta-Fläche

Evaluation of mitral regurgitation

How much quantification do we need?

Abstract

Severe mitral regurgitation (MR) is associated with increased morbidity and mortality. Thus, the correct evaluation of the underlying etiology, pathomechanism and severity is crucial for optimal treatment. Echocardiography is the predominant diagnostic modality in the clinical routine as it enables grading of mitral regurgitation, which can frequently be achieved by readily available qualitative parameters. Additionally, echocardiography provides several methods to quantify the hemodynamic significance of MR. The effective regurgitation orifice area (EROA) is the quantitative parameter best correlated with clinical events. American and European imaging guidelines both recommend the use of quantitative parameters even though they disagree on the cut-off values for secondary MR. The evaluation of MR should always include an assessment of the adjacent heart chambers in order to be able to assess the impact of volume overload on size and function of the left ventricle and left atrium. The final interpretation of the quantitative parameters requires knowledge of left ventricular volume and ejection fraction. Newer 3D-echocardiographic approaches to quantify MR are less dependent on mathematical assumptions and have shown convincing results in several studies but still lack sufficient clinical validation. As an alternative to echocardiography, for specific indications cardiac magnetic resonance imaging (MRI) has proven to be a systematic and observer-independent method for quantification of MR.

Keywords

Mitral valve Effective regurgitant orifice area Regurgitant volume Echocardiography Cardiac magnetic resonance imaging 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

F. Kreidel, T. Ruf, A. Tamm, M. Geyer, T. Emrich und R.S. von Bardeleben geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Nkomo VT et al (2006) Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011PubMedGoogle Scholar
  2. 2.
    Lancellotti P et al (2013) Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 14:611–644PubMedGoogle Scholar
  3. 3.
    Zoghbi WA et al (2017) Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr 30:303–371PubMedGoogle Scholar
  4. 4.
    Grayburn PA et al (2014) Defining “severe” secondary mitral regurgitation: emphasizing an integrated approach. J Am Coll Cardiol 64:2792–2801PubMedGoogle Scholar
  5. 5.
    Biner S et al (2012) Acute effect of percutaneous MitraClip therapy in patients with haemodynamic decompensation. Eur J Heart Fail 14:939–945PubMedGoogle Scholar
  6. 6.
    Fehske W et al (1994) Color-coded Doppler imaging of the vena contracta as a basis for quantification of pure mitral regurgitation. Am J Cardiol 73:268–274PubMedGoogle Scholar
  7. 7.
    Hall SA et al (1997) Assessment of mitral regurgitation severity by Doppler color flow mapping of the vena contracta. Circulation 95:636–642PubMedGoogle Scholar
  8. 8.
    Kahlert P et al (2008) Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 21:912–921PubMedGoogle Scholar
  9. 9.
    Antoine C et al (2018) Clinical outcome of degenerative mitral regurgitation. Circulation 138:1317–1326PubMedGoogle Scholar
  10. 10.
    Enriquez-Sarano M et al (2005) Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 352:875–883PubMedGoogle Scholar
  11. 11.
    Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ (2001) Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103:1759–1764PubMedGoogle Scholar
  12. 12.
    Rossi A et al (2011) Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart 97:1675–1680PubMedGoogle Scholar
  13. 13.
    Bargiggia GS et al (1991) A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 84:1481–1489PubMedGoogle Scholar
  14. 14.
    Dujardin KS et al (1997) Grading of mitral regurgitation by quantitative Doppler echocardiography: calibration by left ventricular angiography in routine clinical practice. Circulation 96:3409–3415PubMedGoogle Scholar
  15. 15.
    Yosefy C et al (2007) Proximal flow convergence region as assessed by real-time 3‑dimensional echocardiography: challenging the hemispheric assumption. J Am Soc Echocardiogr 20:389–396PubMedGoogle Scholar
  16. 16.
    Lang RM et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr 28:1–39.e14Google Scholar
  17. 17.
    Grayburn PA, Sannino A, Packer M (2019) Proportionate and disproportionate functional mitral regurgitation: a new conceptual framework that reconciles the results of the MITRA-FR and COAPT trials. JACC Cardiovasc Imaging 12:353–362PubMedGoogle Scholar
  18. 18.
    Little SH et al (2008) Three-dimensional color Doppler echocardiography for direct measurement of vena contracta area in mitral regurgitation: in vitro validation and clinical experience. JACC Cardiovasc Imaging 1:695–704PubMedPubMedCentralGoogle Scholar
  19. 19.
    Little SH (2012) Three-dimensional echocardiography to quantify mitral valve regurgitation. Curr Opin Cardiol 27:477–484PubMedGoogle Scholar
  20. 20.
    Shanks M et al (2010) Quantitative assessment of mitral regurgitation: comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging 3:694–700PubMedGoogle Scholar
  21. 21.
    Zeng X et al (2011) Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging 4:506–513PubMedPubMedCentralGoogle Scholar
  22. 22.
    Goebel B et al (2018) Vena contracta area for severity grading in functional and degenerative mitral regurgitation: a transoesophageal 3D colour Doppler analysis in 500 patients. Eur Heart J Cardiovasc Imaging 19:639–646PubMedGoogle Scholar
  23. 23.
    Avenatti E et al (2019) Diagnostic value of 3‑dimensional vena contracta area for the quantification of residual mitral regurgitation after Mitraclip procedure. JACC Cardiovasc Interv 12:582–591PubMedGoogle Scholar
  24. 24.
    Alessandrini H et al (2017) Prognostic implication of post-MitraClip vena contracta area in heart failure patients with functional mitral regurgitation. EuroIntervention 12:1946–1953PubMedGoogle Scholar
  25. 25.
    Gorodisky L, Agmon Y, Porat M, Abadi S, Lessick J (2018) Assessment of mitral regurgitation by 3‑dimensional proximal flow convergence using magnetic resonance imaging: comparison with echo-Doppler. Int J Cardiovasc Imaging 34:793–802PubMedGoogle Scholar
  26. 26.
    Schmidt FP et al (2014) Usefulness of 3D-PISA as compared to guideline endorsed parameters for mitral regurgitation quantification. Int J Cardiovasc Imaging 30:1501–1508PubMedGoogle Scholar
  27. 27.
    Choi J et al (2014) Differential effect of 3‑dimensional color Doppler echocardiography for the quantification of mitral regurgitation according to the severity and characteristics. Circ Cardiovasc Imaging 7:535–544PubMedGoogle Scholar
  28. 28.
    de Agustín JA et al (2012) Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation: a validation study. J Am Soc Echocardiogr 25:815–823PubMedGoogle Scholar
  29. 29.
    Thavendiranathan P et al (2012) Automated quantification of mitral inflow and aortic outflow stroke volumes by three-dimensional real-time volume color-flow doppler transthoracic Echocardiography: comparison with pulsed-wave doppler and cardiac magnetic resonance imaging. J Am Soc Echocardiogr 25:56–65PubMedGoogle Scholar
  30. 30.
    Uretsky S et al (2018) A comparative assessment of echocardiographic parameters for determining primary mitral regurgitation severity using magnetic resonance imaging as a reference standard. J Am Soc Echocardiogr 31:992–999PubMedGoogle Scholar
  31. 31.
    Blanken CPS et al (2018) Advanced cardiac MRI techniques for evaluation of left-sided valvular heart disease. J Magn Reson Imaging 48:318–329PubMedPubMedCentralGoogle Scholar
  32. 32.
    Nordmeyer S et al (2013) Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging 37:208–216PubMedGoogle Scholar
  33. 33.
    Uretsky S et al (2015) Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity: a prospective multicenter trial. J Am Coll Cardiol 65:1078–1088PubMedGoogle Scholar
  34. 34.
    Capoulade R, Piriou N, Serfaty JM, Le Tourneau T (2017) Multimodality imaging assessment of mitral valve anatomy in planning for mitral valve repair in secondary mitral regurgitation. J Thorac Dis 9:S640–S660PubMedPubMedCentralGoogle Scholar
  35. 35.
    Delgado V et al (2009) Assessment of mitral valve anatomy and geometry with multislice computed tomography. JACC Cardiovasc Imaging 2:556–565PubMedGoogle Scholar
  36. 36.
    Izumo M et al (2013) Comparison of real-time three-dimensional transesophageal echocardiography to two-dimensional transesophageal echocardiography for quantification of mitral valve prolapse in patients with severe mitral regurgitation. Am J Cardiol 111:588–594PubMedGoogle Scholar
  37. 37.
    Kovalova S, Necas J (2011) RT-3D TEE: characteristics of mitral annulus using mitral valve quantification (MVQ) program. Echocardiography 28:461–467PubMedGoogle Scholar
  38. 38.
    Kagiyama N et al (2016) Efficacy and accuracy of novel automated mitral valve quantification: three-dimensional transesophageal echocardiographic study. Echocardiography 33:756–763PubMedGoogle Scholar
  39. 39.
    Noack T et al (2015) Four-dimensional modelling of the mitral valve by real-time 3D transoesophageal echocardiography: proof of concept. Interact CardioVasc Thorac Surg 20:200–208PubMedGoogle Scholar
  40. 40.
    Lee AP et al (2013) Quantitative analysis of mitral valve morphology in mitral valve prolapse with real-time 3‑dimensional echocardiography: importance of annular saddle shape in the pathogenesis of mitral regurgitation. Circulation 127:832–841PubMedGoogle Scholar
  41. 41.
    Cong T et al (2018) Quantitative analysis of mitral valve morphology in atrial functional mitral regurgitation using real-time 3‑dimensional echocardiography atrial functional mitral regurgitation. Cardiovasc Ultrasound 16:13PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • F. Kreidel
    • 1
    Email author
  • T. Ruf
    • 1
  • A. Tamm
    • 1
  • M. Geyer
    • 1
  • T. Emrich
    • 2
  • R. S. von Bardeleben
    • 1
  1. 1.Department of CardiologyUniversitätsmedizin MainzMainzDeutschland
  2. 2.Klinik für Radiologie der Universitätsmedizin MainMainzDeutschland

Personalised recommendations