Advertisement

Herz

, Volume 44, Issue 7, pp 611–629 | Cite as

Kardiovaskuläre Pharmakotherapie und koronare Revaskularisation bei terminaler Niereninsuffizienz

  • L. LauderEmail author
  • S. Ewen
  • I. E. Emrich
  • M. Böhm
  • F. Mahfoud
CME
  • 190 Downloads

Zusammenfassung

Herz und Nieren sind in ihrer physiologischen Interaktion eng miteinander verbunden. Kardiovaskuläre Erkrankungen sind die häufigste Todesursache bei Patienten mit chronischer Nierenerkrankung, wobei diese wiederum das Auftreten und das Fortschreiten kardiovaskulärer Erkrankungen begünstigen kann. Die Therapie der koronaren Herzkrankheit (KHK) und der chronischen Herzinsuffizienz unterscheidet sich bei Patienten mit einer milden Nierenfunktionseinschränkung (geschätzte glomeruläre Filtrationsrate [eGFR]: >60 ml/min/1,73 m2) nicht wesentlich von der Therapie nierengesunder Patienten. Da Patienten mit einer fortgeschrittenen Niereninsuffizienz aus den Zulassungsstudien meist ausgeschlossen wurden, basieren viele Therapieempfehlungen in dieser Patientengruppe auf Beobachtungsstudien, Subgruppen- und Metaanalysen oder pathophysiologischen Erwägungen, die nicht durch kontrollierte Studien gestützt sind. Daher werden prospektive, randomisierte Studien zur Therapie von KHK und Herzinsuffizienz benötigt, die Patienten mit fortgeschrittener Nierenfunktionseinschränkung gezielt untersuchen.

Schlüsselwörter

Kardiovaskuläre Erkrankungen Kardiorenales Syndrom Herzinsuffizienz Koronare Herzkrankheit Niereninsuffizienz 

Cardiovascular pharmacotherapy and coronary revascularization in end-stage renal failure

Abstract

There is a close physiological relationship between the kidneys and the heart. Cardiovascular diseases are the most prevalent cause of death in patients with chronic kidney disease (CKD), whereas CKD may directly accelerate the progression of cardiovascular diseases and is considered to be a cardiovascular risk factor. In patients with mild CKD, i.e. an estimated glomerular filtration rate (eGFR) >60 ml/min/1.73 m2, treatment of coronary artery disease and chronic heart failure is not essentially different from patients with preserved renal function; however, as most pivotal trials have systematically excluded patients with advanced renal failure, many treatment recommendations in this patient group are based on observational studies, post hoc subgroup analyses and meta-analyses or pathophysiological considerations, which are not supported by controlled studies. Therefore, prospective randomized studies on the management of heart failure and coronary artery disease are needed, which should specifically focus on the growing number of patients with advanced renal functional impairment.

Keywords

Cardiovascular diseases Cardiorenal syndrome Heart failure Coronary disease Chronic renal insufficiency 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

Gemäß den Richtlinien des Springer Medizin Verlags werden Autoren und Wissenschaftliche Leitung im Rahmen der Manuskripterstellung und Manuskriptfreigabe aufgefordert, eine vollständige Erklärung zu ihren finanziellen und nichtfinanziellen Interessen abzugeben.

Autoren

L. Lauder gibt an, dass kein Interessenskonflikt besteht. S. Ewen gibt an, Vortragshonorare von Pfizer, Novartis, Servier, AstraZeneca und Bayer erhalten zu haben. I.E. Emrich gibt an, dass sie Vortragshonorare von Pharmacosmos erhalten hat. M. Böhm erklärt, dass er Sprecherhonorare bzw. Honorare als wissenschaftlicher Berater von Amgen, Abbott, AstraZeneca, Bayer, Boehringer Ingelheim, Medtronic, Servier und Vifor erhalten hat. F. Mahfoud gibt an, Vortragshonorare von Medtronic, Recor, Berlin Chemie und Boehringer Ingelheim erhalten zu haben. M. Böhm und F. Mahfoud erklären, dass sie durch die Deutsche Forschungsgemeinschaft und den SFB-TRR218 unterstützt werden.

Wissenschaftliche Leitung

Die vollständige Erklärung zum Interessenkonflikt der Wissenschaftlichen Leitung finden Sie am Kurs der zertifizierten Fortbildung auf www.springermedizin.de/cme.

Der Verlag

erklärt, dass für die Publikation dieser CME-Fortbildung keine Sponsorengelder an den Verlag fließen.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Marx N, Noels H, Jankowski J et al (2018) Mechanisms of cardiovascular complications in chronic kidney disease: research focus of the Transregional Research Consortium SFB TRR219 of the University Hospital Aachen (RWTH) and the Saarland University. Clin Res Cardiol 107:120–126.  https://doi.org/10.1007/s00392-018-1260-0 CrossRefPubMedGoogle Scholar
  2. 2.
    Tonelli M, Muntner P, Lloyd A et al (2012) Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet 380:807–814.  https://doi.org/10.1016/S0140-6736(12)60572-8 CrossRefPubMedGoogle Scholar
  3. 3.
    Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:4.  https://doi.org/10.1038/kisup.2012.76 CrossRefGoogle Scholar
  4. 4.
    Rangaswami J, Bhalla V, Blair JEA et al (2019) Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation 139:e840–e878.  https://doi.org/10.1161/CIR.0000000000000664 CrossRefPubMedGoogle Scholar
  5. 5.
    Go AS, Chertow GM, Fan D et al (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305.  https://doi.org/10.1056/NEJMoa041031 CrossRefPubMedGoogle Scholar
  6. 6.
    Anavekar NS, McMurray JJV, Velazquez EJ et al (2004) Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med 351:1285–1295.  https://doi.org/10.1056/NEJMoa041365 CrossRefPubMedGoogle Scholar
  7. 7.
    Charytan D, Kuntz RE, Mauri L, DeFilippi C (2007) Distribution of coronary artery disease and relation to mortality in asymptomatic hemodialysis patients. Am J Kidney Dis 49:409–416.  https://doi.org/10.1053/j.ajkd.2006.11.042 CrossRefPubMedGoogle Scholar
  8. 8.
    Schmidt A, Stefenelli T, Schuster E, Mayer G (2001) Informational contribution of noninvasive screening tests for coronary artery disease in patients on chronic renal replacement therapy. Am J Kidney Dis 37:56–63.  https://doi.org/10.1053/ajkd.2001.20584 CrossRefPubMedGoogle Scholar
  9. 9.
    Bangalore S (2016) Diagnostic, therapeutic, and clinical trial conundrum of patients with chronic kidney disease. JACC Cardiovasc Interv 9:2110–2112.  https://doi.org/10.1016/j.jcin.2016.08.031 CrossRefPubMedGoogle Scholar
  10. 10.
    Tebaldi M, Biscaglia S, Fineschi M et al (2016) Fractional flow reserve evaluation and chronic kidney disease: analysis from a multicenter Italian registry (the FREAK study). Catheter Cardiovasc Interv 88:555–562.  https://doi.org/10.1002/ccd.26364 CrossRefPubMedGoogle Scholar
  11. 11.
    Mehran R, Dangas GD, Weisbord SD (2019) Contrast-associated acute kidney injury. N Engl J Med 380:2146–2155.  https://doi.org/10.1056/NEJMra1805256 CrossRefPubMedGoogle Scholar
  12. 12.
    Ferrari R, Camici PG, Crea F et al (2018) A “diamond” approach to personalized treatment of angina. Nat Rev Cardiol 15:120–132.  https://doi.org/10.1038/nrcardio.2017.131 CrossRefPubMedGoogle Scholar
  13. 13.
    Montalescot G, Sechtem U, Achenbach S et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J 34:2949–3003.  https://doi.org/10.1093/eurheartj/eht296 CrossRefPubMedGoogle Scholar
  14. 14.
    Belsey J, Savelieva I, Mugelli A, Camm AJ (2015) Relative efficacy of antianginal drugs used as add-on therapy in patients with stable angina: a systematic review and meta-analysis. Eur J Prev Cardiol 22(7):837–848.  https://doi.org/10.1177/2047487314533217 CrossRefPubMedGoogle Scholar
  15. 15.
    Jerling M (2006) Clinical pharmacokinetics of ranolazine. Clin Pharmacokinet 45:469–491.  https://doi.org/10.2165/00003088-200645050-00003 CrossRefPubMedGoogle Scholar
  16. 16.
    Borer JS, Fox K, Jaillon P, Lerebours G (2003) Antianginal and antiischemic effects of ivabradine, an If inhibitor, in atable angina. Circulation 107:817–823.  https://doi.org/10.1161/01.CIR.0000048143.25023.87 CrossRefPubMedGoogle Scholar
  17. 17.
    Fox K, Ford I, Steg PG et al (2014) Ivabradine in stable coronary artery disease without clinical heart failure. N Engl J Med 371:1091–1099.  https://doi.org/10.1056/NEJMoa1406430 CrossRefPubMedGoogle Scholar
  18. 18.
    Chaudhary R, Garg J, Krishnamoorthy P et al (2016) Ivabradine: heart failure and beyond. J Cardiovasc Pharmacol Ther 21:335–343.  https://doi.org/10.1177/1074248415624157 CrossRefPubMedGoogle Scholar
  19. 19.
    Palmer SC, Di Micco L, Razavian M et al (2012) Effects of antiplatelet therapy on mortality and cardiovascular and bleeding outcomes in persons with chronic kidney disease. Ann Intern Med 156:445.  https://doi.org/10.7326/0003-4819-156-6-201203200-00007 CrossRefPubMedGoogle Scholar
  20. 20.
    Gargiulo G, Santucci A, Piccolo R et al (2017) Impact of chronic kidney disease on 2‑year clinical outcomes in patients treated with 6‑month or 24-month DAPT duration: an analysis from the PRODIGY trial. Catheter Cardiovasc Interv 90:E73–E84.  https://doi.org/10.1002/ccd.26921 CrossRefPubMedGoogle Scholar
  21. 21.
    Schuett K, Savvaidis A, Maxeiner S et al (2017) Clot structure: a potent mortality risk factor in patients on hemodialysis. J Am Soc Nephrol 28:1622–1630.  https://doi.org/10.1681/ASN.2016030336 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tanios BY, Itani HS, Zimmerman DL (2015) Clopidogrel use in end-stage kidney disease. Semin Dial 28:276–281.  https://doi.org/10.1111/sdi.12338 CrossRefPubMedGoogle Scholar
  23. 23.
    Baber U, Chandrasekhar J, Sartori S et al (2017) Associations between chronic kidney disease and outcomes with use of prasugrel versus clopidogrel in patients with acute coronary syndrome undergoing percutaneous coronary intervention. JACC Cardiovasc Interv 10:2017–2025.  https://doi.org/10.1016/j.jcin.2017.02.047 CrossRefPubMedGoogle Scholar
  24. 24.
    Bonello L, Angiolillo DJ, Aradi D, Sibbing D (2018) P2Y12 -ADP receptor blockade in chronic kidney disease patients with acute coronary syndromes. Circulation 138:1582–1596.  https://doi.org/10.1161/CIRCULATIONAHA.118.032078 CrossRefPubMedGoogle Scholar
  25. 25.
    Catapano AL, Graham I, De Backer G et al (2016) 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J 37(39):2999–3058.  https://doi.org/10.1093/eurheartj/ehw272 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wanner C, Tonelli M (2014) KDIGO Clinical Practice Guideline for Lipid Management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int 85:1303–1309.  https://doi.org/10.1038/ki.2014.31 CrossRefPubMedGoogle Scholar
  27. 27.
    Baigent C, Landray MJ, Reith C et al (2011) The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377:2181–2192.  https://doi.org/10.1016/S0140-6736(11)60739-3 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tonelli M, Muntner P, Lloyd A et al (2014) Impact of age on the association between CKD and the risk of future coronary events. Am J Kidney Dis 64:375–382.  https://doi.org/10.1053/j.ajkd.2014.03.013 CrossRefPubMedGoogle Scholar
  29. 29.
    Wanner C, Krane V, März W et al (2005) Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 353:238–248.  https://doi.org/10.1056/NEJMoa043545 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fellström BC, Jardine AG, Schmieder RE et al (2009) Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med 360:1395–1407.  https://doi.org/10.1056/NEJMoa0810177 CrossRefPubMedGoogle Scholar
  31. 31.
    Chonchol M, Whittle J, Desbien A et al (2008) Chronic kidney disease is associated with angiographic coronary artery disease. Am J Nephrol 28:354–360.  https://doi.org/10.1159/000111829 CrossRefPubMedGoogle Scholar
  32. 32.
    Attallah N, Yassine L, Fisher K, Yee J (2005) Risk of bleeding and restenosis among chronic kidney disease patients undergoing percutaneous coronary intervention. Clin Nephrol 64:412–418.  https://doi.org/10.5414/CNP64412 CrossRefPubMedGoogle Scholar
  33. 33.
    Reddan DN, Szczech LA, Tuttle RH et al (2003) Chronic kidney disease, mortality, and treatment strategies among patients with clinically significant coronary artery disease. J Am Soc Nephrol 14:2373–2380.  https://doi.org/10.1097/01.ASN.0000083900.92829.F5 CrossRefPubMedGoogle Scholar
  34. 34.
    Milojevic M, Head SJ, Mack MJ et al (2018) The impact of chronic kidney disease on outcomes following percutaneous coronary intervention versus coronary artery bypass grafting in patients with complex coronary artery disease: five-year follow-up of the SYNTAX trial. EuroIntervention 14:102–111.  https://doi.org/10.4244/EIJ-D-17-00620 CrossRefPubMedGoogle Scholar
  35. 35.
    Giustino G, Mehran R, Serruys PW et al (2018) Left main revascularization with PCI or CABG in patients with chronic kidney disease. J Am Coll Cardiol 72:754–765.  https://doi.org/10.1016/j.jacc.2018.05.057 CrossRefPubMedGoogle Scholar
  36. 36.
    Wang Y, Zhu S, Gao P, Zhang Q (2017) Comparison of coronary artery bypass grafting and drug-eluting stents in patients with chronic kidney disease and multivessel disease: a meta-analysis. Eur J Intern Med 43:28–35.  https://doi.org/10.1016/j.ejim.2017.04.002 CrossRefPubMedGoogle Scholar
  37. 37.
    Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200.  https://doi.org/10.1093/eurheartj/ehw128 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kottgen A, Russell SD, Loehr LR et al (2007) Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol 18:1307–1315.  https://doi.org/10.1681/ASN.2006101159 CrossRefPubMedGoogle Scholar
  39. 39.
    Foley RN (2003) The clinical epidemiology of cardiovascular diseases in chronic kidney disease: clinical epidemiology of cardiac disease in dialysis patients: left ventricular hypertrophy, ischemic heart disease, and cardiac failure. Semin Dial 16:111–117.  https://doi.org/10.1046/j.1525-139X.2003.160271.x CrossRefPubMedGoogle Scholar
  40. 40.
    Erickson KF, Winkelmayer WC, Chertow GM, Bhattacharya J (2014) Physician visits and 30-day hospital readmissions in patients receiving hemodialysis. J Am Soc Nephrol 25:2079–2087.  https://doi.org/10.1681/ASN.2013080879 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen C, Yang X, Lei Y et al (2016) Urinary biomarkers at the time of AKI diagnosis as predictors of progression of AKI among patients with acute cardiorenal syndrome. Clin J Am Soc Nephrol 11:1536–1544.  https://doi.org/10.2215/CJN.00910116 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jackson CE, MacDonald MR, Petrie MC et al (2011) Associations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study. Eur J Heart Fail 13:746–754.  https://doi.org/10.1093/eurjhf/hfr031 CrossRefPubMedGoogle Scholar
  43. 43.
    Katz DH, Burns JA, Aguilar FG et al (2014) Albuminuria is independently associated with cardiac remodeling, abnormal right and left ventricular function, and worse outcomes in heart failure with preserved ejection fraction. JACC Heart Fail 2:586–596.  https://doi.org/10.1016/j.jchf.2014.05.016 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Velazquez EJ, Morrow DA, DeVore AD et al (2019) Angiotensin–neprilysin inhibition in acute decompensated heart failure. N Engl J Med 380:539–548.  https://doi.org/10.1056/NEJMoa1812851 CrossRefPubMedGoogle Scholar
  45. 45.
    Seferovic PM, Ponikowski P, Anker SD et al (2019) Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of The Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail.  https://doi.org/10.1002/ejhf.1531 CrossRefPubMedGoogle Scholar
  46. 46.
    Gheorghiade M, Vaduganathan M, Fonarow GC, Bonow RO (2013) Rehospitalization for heart failure. J Am Coll Cardiol 61:391–403.  https://doi.org/10.1016/j.jacc.2012.09.038 CrossRefPubMedGoogle Scholar
  47. 47.
    Ferreira JP, Santos M, Almeida S et al (2013) Tailoring diuretic therapy in acute heart failure: insight into early diuretic response predictors. Clin Res Cardiol 102:745–753.  https://doi.org/10.1007/s00392-013-0588-8 CrossRefPubMedGoogle Scholar
  48. 48.
    Faris R, Flather M, Purcell H et al (2001) Diuretics for heart failure. In: Faris R (Hrsg) Cochrane database of systematic reviews. John Wiley & Sons, ChichesterGoogle Scholar
  49. 49.
    Faris R, Flather M, Purcell H et al (2002) Current evidence supporting the role of diuretics in heart failure: a meta analysis of randomised controlled trials. Int J Cardiol 82:149–158.  https://doi.org/10.1016/S0167-5273(01)00600-3 CrossRefPubMedGoogle Scholar
  50. 50.
    Ellison DH, Felker GM (2017) Diuretic treatment in heart failure. N Engl J Med 377:1964–1975.  https://doi.org/10.1056/NEJMra1703100 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Damman K, Valente MAE, Voors AA et al (2014) Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J 35:455–469.  https://doi.org/10.1093/eurheartj/eht386 CrossRefPubMedGoogle Scholar
  52. 52.
    Testani JM, Chen J, McCauley BD et al (2010) Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 122:265–272.  https://doi.org/10.1161/CIRCULATIONAHA.109.933275 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bart BA, Goldsmith SR, Lee KL et al (2012) Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med 367:2296–2304.  https://doi.org/10.1056/NEJMoa1210357 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Frea S, Pidello S, Volpe A et al (2019) Diuretic treatment in high-risk acute decompensation of advanced chronic heart failure—bolus intermittent vs. continuous infusion of furosemide: a randomized controlled trial. Clin Res Cardiol.  https://doi.org/10.1007/s00392-019-01521-y CrossRefPubMedGoogle Scholar
  55. 55.
    MERIT-HF Study Group (1999) Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in-Congestive Heart Failure (MERIT-HF). Lancet 353:2001–2007.  https://doi.org/10.1016/S0140-6736(99)04440-2 CrossRefGoogle Scholar
  56. 56.
    Dargie HJ, Lechat P (1999) The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353:9–13.  https://doi.org/10.1016/S0140-6736(98)11181-9 CrossRefGoogle Scholar
  57. 57.
    Packer M, Bristow MR, Cohn JN et al (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 334:1349–1355.  https://doi.org/10.1056/NEJM199605233342101 CrossRefPubMedGoogle Scholar
  58. 58.
    Flather MD, Shibata MC, Coats AJS et al (2005) Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J 26:215–225.  https://doi.org/10.1093/eurheartj/ehi115 CrossRefPubMedGoogle Scholar
  59. 59.
    House AA, Wanner C, Sarnak MJ et al (2019) Heart failure in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 95:1304–1317.  https://doi.org/10.1016/j.kint.2019.02.022 CrossRefPubMedGoogle Scholar
  60. 60.
    Ghali JK, Wikstrand J, Van Veldhuisen DJ et al (2009) The influence of renal function on clinical outcome and response to β‑blockade in systolic heart failure: insights from Metoprolol CR/XL Randomized Intervention Trial in Chronic HF (MERIT-HF). J Card Fail 15:310–318.  https://doi.org/10.1016/j.cardfail.2008.11.003 CrossRefPubMedGoogle Scholar
  61. 61.
    Badve SV, Roberts MA, Hawley CM et al (2011) Effects of beta-adrenergic antagonists in patients with chronic kidney disease. J Am Coll Cardiol 58:1152–1161.  https://doi.org/10.1016/j.jacc.2011.04.041 CrossRefPubMedGoogle Scholar
  62. 62.
    McDevitt DG (1987) Comparison of pharmacokinetic properties of beta-adrenoceptor blocking drugs. Eur Heart J 8:9–14.  https://doi.org/10.1093/eurheartj/8.suppl_M.9 CrossRefPubMedGoogle Scholar
  63. 63.
    Cice G, Ferrara L, D’Andrea A et al (2003) Carvedilol increases two-year survival in dialysis patients with dilated cardiomyopathy. J Am Coll Cardiol 41:1438–1444.  https://doi.org/10.1016/S0735-1097(03)00241-9 CrossRefPubMedGoogle Scholar
  64. 64.
    Weir MA, Dixon SN, Fleet JL et al (2015) β‑blocker dialyzability and mortality in older patients receiving hemodialysis. J Am Soc Nephrol 26:987–996.  https://doi.org/10.1681/ASN.2014040324 CrossRefPubMedGoogle Scholar
  65. 65.
    Bowling CB, Sanders PW, Allman RM et al (2013) Effects of enalapril in systolic heart failure patients with and without chronic kidney disease: insights from the SOLVD treatment trial. Int J Cardiol 167:151–156.  https://doi.org/10.1016/j.ijcard.2011.12.056 CrossRefPubMedGoogle Scholar
  66. 66.
    Ljungman S, Kjekshus J, Swedberg K (1992) Renal function in severe congestive heart failure during treatment with enalapril (the Cooperative North Scandinavian Enalapril Survival Study [CONSENSUS] Trial). Am J Cardiol 70:479–487.  https://doi.org/10.1016/0002-9149(92)91194-9 CrossRefPubMedGoogle Scholar
  67. 67.
    Edner M, Benson L, Dahlström U, Lund LH (2015) Association between renin–angiotensin system antagonist use and mortality in heart failure with severe renal insufficiency: a prospective propensity score-matched cohort study. Eur Heart J 36:2318–2326.  https://doi.org/10.1093/eurheartj/ehv268 CrossRefPubMedGoogle Scholar
  68. 68.
    McMurray JJV, Packer M, Desai AS et al (2014) Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004.  https://doi.org/10.1056/NEJMoa1409077 CrossRefPubMedGoogle Scholar
  69. 69.
    Damman K, Gori M, Claggett B et al (2018) Renal effects and associated outcomes during angiotensin-neprilysin inhibition in heart failure. JACC Heart Fail 6:489–498.  https://doi.org/10.1016/j.jchf.2018.02.004 CrossRefPubMedGoogle Scholar
  70. 70.
    Haynes R, Judge PK, Staplin N et al (2018) Effects of sacubitril/valsartan versus irbesartan in patients with chronic kidney disease. Circulation 138:1505–1514.  https://doi.org/10.1161/CIRCULATIONAHA.118.034818 CrossRefPubMedGoogle Scholar
  71. 71.
    Athyros VG, Mikhailidis DP, Kakafika AI et al (2007) Angiotensin II reactivation and aldosterone escape phenomena in renin–angiotensin–aldosterone system blockade: is oral renin inhibition the solution? Expert Opin Pharmacother 8:529–535.  https://doi.org/10.1517/14656566.8.5.529 CrossRefPubMedGoogle Scholar
  72. 72.
    van der Horst ICC, Voors AA, van Veldhuisen DJ (2007) Treatment of heart failure with ACE inhibitors and beta-blockers. Clin Res Cardiol 96:193–195.  https://doi.org/10.1007/s00392-007-0487-y CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Pitt B, Zannad F, Remme WJ et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 341:709–717.  https://doi.org/10.1056/NEJM199909023411001 CrossRefPubMedGoogle Scholar
  74. 74.
    Zannad F, McMurray JJV, Krum H et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21.  https://doi.org/10.1056/NEJMoa1009492 CrossRefPubMedGoogle Scholar
  75. 75.
    Matsumoto Y, Mori Y, Kageyama S et al (2014) Spironolactone reduces cardiovascular and cerebrovascular morbidity and mortality in hemodialysis patients. J Am Coll Cardiol 63:528–536.  https://doi.org/10.1016/j.jacc.2013.09.056 CrossRefPubMedGoogle Scholar
  76. 76.
    Hammer F, Malzahn U, Donhauser J et al (2019) A randomized controlled trial of the effect of spironolactone on left ventricular mass in hemodialysis patients. Kidney Int 95:983–991.  https://doi.org/10.1016/j.kint.2018.11.025 CrossRefPubMedGoogle Scholar
  77. 77.
    Charytan DM, Himmelfarb J, Ikizler TA et al (2019) Safety and cardiovascular efficacy of spironolactone in dialysis-dependent ESRD (SPin-D): a randomized, placebo-controlled, multiple dosage trial. Kidney Int 95:973–982.  https://doi.org/10.1016/j.kint.2018.08.034 CrossRefPubMedGoogle Scholar
  78. 78.
    Pitt B, Ferreira PJ, Zannad F (2017) Mineralocorticoid receptor antagonists in patients with heart failure: current experience and future perspectives. Eur Heart J Cardiovasc Pharmacother 3:48–57.  https://doi.org/10.1093/ehjcvp/pvw016 CrossRefPubMedGoogle Scholar
  79. 79.
    Fox K, Ford I, Steg PG et al (2008) Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet 372:807–816.  https://doi.org/10.1016/S0140-6736(08)61170-8 CrossRefPubMedGoogle Scholar
  80. 80.
    Fox K, Ford I, Steg PG et al (2008) Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomised controlled trial. Lancet 372:817–821.  https://doi.org/10.1016/S0140-6736(08)61171-X CrossRefPubMedGoogle Scholar
  81. 81.
    Swedberg K, Komajda M, Böhm M et al (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376:875–885.  https://doi.org/10.1016/S0140-6736(10)61198-1 CrossRefPubMedGoogle Scholar
  82. 82.
    Voors AA, van Veldhuisen DJ, Robertson M et al (2014) The effect of heart rate reduction with ivabradine on renal function in patients with chronic heart failure: an analysis from SHIFT. Eur J Heart Fail 16:426–434.  https://doi.org/10.1002/ejhf.59 CrossRefPubMedGoogle Scholar
  83. 83.
    Ouwerkerk W, Voors AA, Anker SD et al (2017) Determinants and clinical outcome of uptitration of ACE-inhibitors and beta-blockers in patients with heart failure: a prospective European study. Eur Heart J 38:1883–1890.  https://doi.org/10.1093/eurheartj/ehx026 CrossRefPubMedGoogle Scholar
  84. 84.
    Maggioni AP, Anker SD, Dahlström U et al (2013) Are hospitalized or ambulatory patients with heart failure treated in accordance with European Society of Cardiology guidelines? Evidence from 12 440 patients of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 15:1173–1184.  https://doi.org/10.1093/eurjhf/hft134 CrossRefPubMedGoogle Scholar
  85. 85.
    Pitt B, Anker SD, Bushinsky DA et al (2011) Evaluation of the efficacy and safety of RLY5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with chronic heart failure (the PEARL-HF) trial. Eur Heart J 32:820–828.  https://doi.org/10.1093/eurheartj/ehq502 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Anker SD, Kosiborod M, Zannad F et al (2015) Maintenance of serum potassium with sodium zirconium cyclosilicate (ZS-9) in heart failure patients: results from a phase 3 randomized, double-blind, placebo-controlled trial. Eur J Heart Fail 17:1050–1056.  https://doi.org/10.1002/ejhf.300 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128.  https://doi.org/10.1056/NEJMoa1504720 CrossRefGoogle Scholar
  88. 88.
    Wanner C, Lachin JM, Inzucchi SE et al (2018) Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney cisease. Circulation 137:119–129.  https://doi.org/10.1161/CIRCULATIONAHA.117.028268 CrossRefPubMedGoogle Scholar
  89. 89.
    Inzucchi SE, Kosiborod M, Fitchett D et al (2018) Improvement in cardiovascular outcomes with empagliflozin is independent of glycemic control. Circulation 138:1904–1907.  https://doi.org/10.1161/CIRCULATIONAHA.118.035759 CrossRefPubMedGoogle Scholar
  90. 90.
    Rådholm K, Figtree G, Perkovic V et al (2018) Canagliflozin and heart failure in type 2 diabetes mellitus. Circulation 138:458–468.  https://doi.org/10.1161/CIRCULATIONAHA.118.034222 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Wiviott SD, Raz I, Bonaca MP et al (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380:347–357.  https://doi.org/10.1056/NEJMoa1812389 CrossRefPubMedGoogle Scholar
  92. 92.
    Zelniker TA, Wiviott SD, Raz I et al (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393:31–39.  https://doi.org/10.1016/S0140-6736(18)32590-X CrossRefPubMedGoogle Scholar
  93. 93.
    Wanner C, Heerspink HJL, Zinman B et al (2018) Empagliflozin and kidney function decline in patients with type 2 diabetes: a slope analysis from the EMPA-REG OUTCOME trial. J Am Soc Nephrol.  https://doi.org/10.1681/ASN.2018010103 CrossRefPubMedGoogle Scholar
  94. 94.
    Perkovic V, Jardine MJ, Neal B et al (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380:2295–2306.  https://doi.org/10.1056/NEJMoa1811744 CrossRefGoogle Scholar
  95. 95.
    Ghosh RK, Bandyopadhyay D, Hajra A et al (2016) Cardiovascular outcomes of sodium-glucose cotransporter 2 inhibitors: a comprehensive review of clinical and preclinical studies. Int J Cardiol 212:29–36.  https://doi.org/10.1016/j.ijcard.2016.02.134 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • L. Lauder
    • 1
    Email author
  • S. Ewen
    • 1
  • I. E. Emrich
    • 1
  • M. Böhm
    • 1
  • F. Mahfoud
    • 1
    • 2
  1. 1.Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische FakultätUniversität des SaarlandesHomburg/SaarDeutschland
  2. 2.Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations