Advertisement

Herz

pp 1–8 | Cite as

Individual programming of current multiprogrammable pacemakers

Still unsatisfactory?
  • T. TischerEmail author
  • A. Bebersdorf
  • C. Albrecht
  • J. Manhart
  • E. Caglayan
  • A. Öner
  • H. Ince
  • J. Ortak
  • A. Büttner
  • E. Safak
Original articles
  • 81 Downloads

Abstract

Background

Pacemaker (PM) technology has developed tremendously in recent decades. We evaluated the extent of individual programming in current PMs.

Methods

Over a 7-month period in 2016, all deceased persons taken to the Rostock crematorium were prospectively screened for cardiac implantable electronic devices (CIEDs) and these were interrogated in situ. Programming of patient data, leads, and study parameters including mode, lower rate, upper tracking or sensor rate (UTSR), ventricular refractory time, sleeping function, hysteresis, and PM-mediated tachycardia intervention were analyzed and compared with delivery settings. Alterations in atrial/ventricular capture management and atrial/ventricular sensing assurance as well as changes in sensitivity and lead output were evaluated.

Results

We examined 2297 subjects, of whom 154 (6.7%) had CIEDs, with 125 (81.2%) being PMs. Finally, 72 (57.6%) PMs were eligible for analysis with an operation time of 31.0 ± 27.0 months. We excluded 28 (18.2%) implantable cardioverter defibrillators (ICDs), 51 (41%) PMs presenting elective replacement indicator (ERI), two (1.6%) PMs with programming to insufficient function prior to death, and the left ventricle parameter of one (1.4%) cardiac resynchronization therapy pacemaker (CRT-P); further one CIED (0.6%) was not contactable. PMs offered in mean 75.2% of study parameters thereof 88.0% were to adjust manually, whereof 49.3% stayed unchanged to delivery mode. Lead output, UTSR, lower rate, and mode were the most frequently changed parameters (>85.7%, 65.3%, 54.2%, and 52.8%, respectively) compared with unmodified ventricular refractory time and hysteresis (91.7% and. 85.4%, respectively); 2.8% of PMs had out-of-the-box settings. The most frequent personalized data were last (88.9%) and first name (73.6%), while atrial and ventricular serial lead numbers were rarely entered (18.2% and 23.4%, respectively).

Conclusion

The programming possibilities of PMs have advanced greatly. Nonetheless, improvements in individual PM programming are still needed as demonstrated by the findings in this study, e.g., PMs with manufacturer settings and lack of individual data.

Keywords

Pacemaker, artificial Manufacturer settings Cardiac resynchronization therapy devices Individual programming Automatic features 

Individuelle Programmierung heutiger multiprogrammierbarer Schrittmacher

Bisher nicht zufriedenstellend?

Zusammenfassung

Hintergrund

Bei der Schrittmacher(SM)-Technologie gab es in den letzten Jahrzehnten eine rasante Entwicklung. Die Autoren untersuchten das Ausmaß der individuellen Programmierung bei aktuellen SM.

Methoden

Prospektiv wurden 7 Monate lang im Jahr 2016 alle Verstorbenen, die in das Rostocker Krematorium überführt wurden, auf kardiale implantierbare elektronische Geräte („cardiac implantable electronic devices“, CIED) hin überprüft und diese in situ untersucht. Die Programmierung der Patientendaten, Elektroden und Studienparameter einschließlich Modus, Minimalfrequenz, Maximalfrequenz („upper tracking or sensor rate“, UTSR), ventrikuläre Refraktärzeit, Schlaffunktion, Hysterese und SM-vermittelte Tachykardie-Intervention wurden ausgewertet und mit den Einstellungen bei Auslieferung verglichen. Veränderungen des atrialen/ventrikulären Capture-Managements und atriale/ventrikuläre Sicherstellung der Sensorfunktion sowie Änderungen der Empfindlichkeit und Elektrodenleistung wurden untersucht.

Ergebnisse

Untersucht wurden 2297 Probanden, bei 154 (6,7 %) fand sich ein CIED, davon waren 125 (81,2 %) SM. Letztlich eigneten sich 72 (57,6 %) SM mit einer Betriebsdauer von 31,0 ± 27,0 Monaten für die Auswertung. Wir schlossen 28 (18,2 %) implantierbare Kardioverter-Defibrillatoren (ICDs), 51 (41 %) PMs mit elektivem Ersatzindikator (ERI), zwei (1,6 %) PM mit Programmierung auf unzureichende Funktion vor dem Tod und den linken Ventrikelparameter eines (1,4 %) Herzschrittmachers (CRT-P) aus; eine weitere CIED (0,6 %) war nicht kontaktierbar. Insgesamt waren Daten zu 75,2 % der Studienparameter durch Auswertung der SM verfügbar, bei 88,0 % dieser SM waren die Parameter manuell eingestellt worden, wovon wiederum in 49,3 % dieser Fälle die Einstellungen von den Einstellungen des Herstellers abwichen. Elektrodenleistung, UTSR, Minimalfrequenz und Modus waren die meistgeänderten Parameter (>85,7 %; 65,3 %; 54,2 % bzw. 52,8 %) verglichen mit unveränderter ventrikulärer Refraktärzeit und Hysterese in 91,7 % bzw. 85,4 % der Fälle; bei 2,8 % der SM fanden sich die vorkonfigurierten Einstellungen. Zu den häufigsten personalisierten Daten gehörten Nach- (88,9 %) und Vorname (73,6 %), während atriale und ventrikuläre Seriennummern der Elektroden nur selten eingegeben worden waren (18,2 % bzw. 23,4 %).

Schlussfolgerung

Bei den Möglichkeiten der Programmierung von SM gibt es große Fortschritte. Trotzdem sind weitere Verbesserungen bei der individuellen SM-Programmierung notwendig, wie anhand der Ergebnisse aus der vorliegenden Studie gezeigt wurde, z. B. SM mit Herstellereinstellungen und ohne individuelle Daten.

Schlüsselwörter

Künstlicher Schrittmacher Herstellereinstellungen Systeme zur kardialen Resynchronisationstherapie Individuelle Programmierung Automatische Funktion 

Notes

Compliance with ethical guidelines

Conflict of interest

T. Tischer, A. Bebersdorf, C. Albrecht, J. Manhart, E. Caglayan, A. Öner, H. Ince, J. Ortak, A. Büttner, and Erdal Safak declare that they have no competing interests.

All procedures performed in this study were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Raatikainen MJ, Arnar DO, Zeppenfeld K, Merino JL, Kuck KH, Hindricks G (2015) Current trends in the use of cardiac implantable electronic devices and interventional electrophysiological procedures in the European Society of Cardiology member countries: 2015 report from the European Heart Rhythm Association. Europace 17(Suppl 4):iv1–iv72.  https://doi.org/10.1093/europace/euv265 CrossRefPubMedGoogle Scholar
  2. 2.
    Wilkoff BL, Auricchio A, Brugada J, Cowie M, Ellenbogen KA, Gillis AM et al (2008) HRS/EHRA Expert Consensus on the Monitoring of Cardiovascular Implantable Electronic Devices (CIEDs): description of techniques, indications, personnel, frequency and ethical considerations: developed in partnership with the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA); and in collaboration with the American College of Cardiology (ACC), the American Heart Association (AHA), the European Society of Cardiology (ESC), the Heart Failure Association of ESC (HFA), and the Heart Failure Society of America (HFSA). Endorsed by the Heart Rhythm Society, the European Heart Rhythm Association (a registered branch of the ESC), the American College of Cardiology, the American Heart Association. Europace 10 (6):707–725.  https://doi.org/10.1093/europace/eun122 CrossRefPubMedGoogle Scholar
  3. 3.
    Carrault G, Mabo P (2014) Are electronic cardiac devices still evolving? Yearb Med Inform 9:128–134.  https://doi.org/10.15265/IY-2014-0021 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Irnich W, Kramer E, Muller R (1991) The programming of cardiac pacemakers—wish and reality. Dtsch Med Wochenschr 116(16):601–605.  https://doi.org/10.1055/s-2008-1063654 CrossRefPubMedGoogle Scholar
  5. 5.
    Giammaria M, Quirino G, Alberio M, Parravicini U, Cipolla E, Rossetti G, Ruocco A, Senatore G, Rametta F, Pistelli P (2017) Automatic atrial capture device control in real-life practice: a multicenter experience. J Arrhythm 33(2):139–143.  https://doi.org/10.1016/j.joa.2016.06.002 CrossRefPubMedGoogle Scholar
  6. 6.
    Biffi M, Bertini M, Saporito D, Belotti G, Quartieri F, Piancastelli M, Pucci A, Boggian G, Mazzocca GF, Giorgi D, Diotallevi P, Diemberger I, Martignani C, Pancaldi S, Ziacchi M, Marcantoni L, Toselli T, Attala S, Iori M, Bottoni N, Argnani S, Tomasi C, Sassone B, Boriani G (2016) Automatic management of atrial and ventricular stimulation in a contemporary unselected population of pacemaker recipients: the ESSENTIAL Registry. Europace 18(10):1551–1560.  https://doi.org/10.1093/europace/euw021 CrossRefPubMedGoogle Scholar
  7. 7.
    Boriani G, Rusconi L, Biffi M, Pavia L, Sassara M, Malfitano D, Bongiorni MG, Padeletti L, Filice I, Sanfelici D, Maffei P, Vicentini A, Branzi A (2006) Role of ventricular autocapture function in increasing longevity of DDDR pacemakers: a prospective study. Europace 8(3):216–220.  https://doi.org/10.1093/europace/euj027 CrossRefPubMedGoogle Scholar
  8. 8.
    Alings M, Vireca E, Bastian D, Wardeh AJ, Nimeth C, Tukkie R, Trinks S, Kainz W, Delaney C, Kaltofen G, Investigators AS (2011) Clinical use of automatic pacemaker algorithms: results of the AUTOMATICITY registry. Europace 13(7):976–983.  https://doi.org/10.1093/europace/eur052 CrossRefPubMedGoogle Scholar
  9. 9.
    Chiu CC, Vicente KJ, Buffo-Sequeira I, Hamilton RM, McCrindle BW (2004) Usability assessment of pacemaker programmers. Pacing Clin Electrophysiol 27(10):1388–1398.  https://doi.org/10.1111/j.1540-8159.2004.00643.x CrossRefPubMedGoogle Scholar
  10. 10.
    Udo EO, van Hemel NM, Zuithoff NP, Dijk WA, Hooijschuur CA, Doevendans PA, Moons KG (2013) Pacemaker follow-up: are the latest guidelines in line with modern pacemaker practice? Europace 15(2):243–251.  https://doi.org/10.1093/europace/eus310 CrossRefPubMedGoogle Scholar
  11. 11.
    Ziacchi M, Palmisano P, Ammendola E, Dell’era G, Guerra F, Aquilani S, Aspromonte V, Boriani G, Accogli M, Del Giorno G, Occhetta E, Capucci A, Ricci RP, Maglia G, Biffi M, Italian Association of Arrhythmology and Cardiac Pacing (AIAC) (2017) Clinically guided pacemaker choice and setting: pacemaker expert programming study. Europace 19(9):1500–1507.  https://doi.org/10.1093/europace/euw256 CrossRefPubMedGoogle Scholar
  12. 12.
    Sinha SK, Chrispin J, Barth A, Rickard JJ, Spragg DD, Berger R, Calkins H, Tomaselli G, Marine JE (2017) Clinical recognition of pacemaker battery depletion and automatic reprogramming. Pacing Clin Electrophysiol 40(8):969–974.  https://doi.org/10.1111/pace.13135 CrossRefPubMedGoogle Scholar
  13. 13.
    Ribeiro AL, Rincon LG, Oliveira BG, Mota CC, Pires MT (2001) Enhancing longevity of pacemakers through reprogramming. Underutilization and cost-effectiveness. Arq Bras Cardiol 76(6):437–444CrossRefGoogle Scholar
  14. 14.
    Biffi M, Melissano D, Rossi P, Kaliska G, Havlicek A, Pelargonio G, Romero R, Guastaferro C, Menichelli M, Vireca E, Frisoni J, Boriani G, Malacky T (2014) The OPTI-MIND study: a prospective, observational study of pacemaker patients according to pacing modality and primary indications. Europace 16(5):689–697.  https://doi.org/10.1093/europace/eut387 CrossRefPubMedGoogle Scholar
  15. 15.
    van Eck JW, van Hemel NM, de Voogt WG, Meeder JG, Spierenburg HA, Crommentuyn H, Keijzer R, Grobbee DE, Moons KG, FOLLOWPACE investigators (2008) Routine follow-up after pacemaker implantation: frequency, pacemaker programming and professionals in charge. Europace 10(7):832–837.  https://doi.org/10.1093/europace/eun093 CrossRefPubMedGoogle Scholar
  16. 16.
    Chen KP, Xu G, Wu S, Tang B, Wang L, Zhang S, China PSI (2013) Clinical evaluation of pacemaker automatic capture management and atrioventricular interval extension algorithm. Europace 15(3):395–401.  https://doi.org/10.1093/europace/eus309 CrossRefPubMedGoogle Scholar
  17. 17.
    Curila K, Smida J, Herman D, Osmancik P, Stros P, Zdarska J, Prochazkova R, Widimsky P (2017) Pacemaker reprogramming rarely needed after device replacement. Herz.  https://doi.org/10.1007/s00059-017-4627-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Biffi M, Bertini M, Mazzotti A, Gardini B, Mantovani V, Ziacchi M, Valzania C, Martignani C, Diemberger I, Boriani G (2011) Long-term RV threshold behavior by automated measurements: safety is the standpoint of pacemaker longevity! Pacing Clin Electrophysiol 34(1):89–95.  https://doi.org/10.1111/j.1540-8159.2010.02915.x CrossRefPubMedGoogle Scholar
  19. 19.
    Palmisano P, Ziacchi M, Ammendola E, Dell’Era G, Guerra F, Aspromonte V, Boriani G, Nigro G, Occhetta E, Capucci A, Ricci RP, Maglia G, Biffi M, Accogli M, Accogli M (2018) Long-term progression of rhythm and conduction disturbances in pacemaker recipients: findings from the Pacemaker Expert Programming study. J Cardiovasc Med (Hagerstown) 19(7):357–365.  https://doi.org/10.2459/JCM.0000000000000673 CrossRefGoogle Scholar
  20. 20.
    Ureyen CM, Bas CY, Yuksel IO, Kus G, Cagirci G, Arslan S (2017) Should physicians instead of industry representatives be the main actor of cardiac implantable electronic device follow-up? (Super Follow-up). Anatol J Cardiol 18(1):23–30.  https://doi.org/10.14744/AnatolJCardiol.2017.7374 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • T. Tischer
    • 1
    Email author
  • A. Bebersdorf
    • 1
  • C. Albrecht
    • 1
  • J. Manhart
    • 2
  • E. Caglayan
    • 1
  • A. Öner
    • 1
  • H. Ince
    • 1
  • J. Ortak
    • 3
  • A. Büttner
    • 2
  • E. Safak
    • 3
  1. 1.Department of CardiologyUniversity Hospital RostockRostockGermany
  2. 2.Institute of Legal MedicineRostock University Medical CenterRostockGermany
  3. 3.Department of CardiologyVivantes Klinikum im Friedrichshain und Am UrbanBerlinGermany

Personalised recommendations