Advertisement

Herz

, Volume 44, Issue 8, pp 712–716 | Cite as

Regulation of geminin by neuropeptide Y in vascular smooth muscle cell proliferation

A current review
  • S.-y. Liang
  • Y.-l. Zhou
  • M.-q. ShuEmail author
  • S. LinEmail author
Review articles
  • 125 Downloads

Abstract

Geminin, a key regulator of DNA replication licensing in the cell cycle, plays an essential role in determining the fate of cells via suppression of cell proliferation and cellular differentiation. Neuropeptide Y (NPY) intensifies the proliferation of vascular smooth muscle cells (VSMCs) directly by binding with Y1 receptors. In vitro experiments have shown that stimulation of NPY on VSMCs via regulation of geminin is a double-edged sword. Given that the proliferation and the phenotypic transformation of VSMCs increase the risk for progression of atherosclerosis, we focus on the role of geminin interference in determining the fate of VSMCs. Furthermore, we discuss the therapeutic potential of peripheral neurotransmitter interference, thus pointing toward future research directions in the treatment of atherosclerosis.

Keywords

DNA replication Neuropeptide Y Atherosclerosis Neurotransmitter Cell cycle 

Abbreviations

HPC

Hematopoietic progenitor cell

HSCs

Hhematopoietic stem cells

MCM

Mini-chromosome maintenance complex

NPY

Neuropeptide Y

pre-RC

Pre-replication complex

VSMCs

Vascular smooth muscle cells

Regulierung von Geminin durch Neuropeptid Y bei der Proliferation vaskulärer glatter Muskelzellen

Eine aktuelle Übersicht

Zusammenfassung

Geminin, eine wesentlicher Regulator der Lizensierung der DNA-Replikation im Zellzyklus, spielt eine wichtige Rolle in der Bestimmung des Zellschicksals via Suppression der Zellproliferation und Zelldifferenzierung. Neuropeptid Y (NPY) verstärkt die Proliferation vaskulärer glattmuskulärer Zellen („vascular smooth muscle cells“, VSMC) unmittelbar durch Bindung an Y1-Rezeptoren. In-vitro-Versuche haben gezeigt, dass die Stimulation von NPY auf VSMC via Regulation von Geminin ein zweischneidiges Schwert darstellt. Angesichts dessen, dass die Proliferation und die phänotypische Transformation von VSMC das Risiko der Progression von Atherosklerose erhöht, richteten die Autoren ihr Augenmerk auf die Rolle der Beeinflussung von Geminin bei der Bestimmung des Schicksals von VSMC. Darüber hinaus erörtern die Autoren das therapeutische Potenzial der Beeinflussung peripherer Neurotransmitter, um eine Richtung zukünftiger Forschung für die Therapie der Atherosklerose aufzuzeigen.

Schlüsselwörter

DNA-Replikation Neuropeptid Y Atherosklerose Neurotransmitter Zellzyklus 

Notes

Acknowledgements

This work was supported by Natural Science Foundation of China (grant numbers 81670402, 815703960).

Compliance with ethical guidelines

Conflict of interest

S.-y. Liang, Y.-l. Zhou, M.-q. Shu, and S. Lin declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Legein B et al (2013) Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci 70(20):3847–3869CrossRefGoogle Scholar
  2. 2.
    Yahagi K et al (2016) Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol 13(2):79–98CrossRefGoogle Scholar
  3. 3.
    Dzau VJ, Braun-Dullaeus RC, Sedding DG (2002) Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 8(11):1249–1256CrossRefGoogle Scholar
  4. 4.
    Zhang Y et al (2014) Geminin interference facilitates vascular smooth muscle cell proliferation by upregulation of CDK-1. Cardiovasc Drugs Ther 28(5):407–414CrossRefGoogle Scholar
  5. 5.
    McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93(6):1043–1053CrossRefGoogle Scholar
  6. 6.
    Kroll KL et al (1998) Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development 125(16):3247–3258PubMedGoogle Scholar
  7. 7.
    Seo S et al (2005) Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev 19(14):1723–1734CrossRefGoogle Scholar
  8. 8.
    Yasunaga S et al (2016) Role of Geminin in cell fate determination of hematopoietic stem cells (HSCs). Int J Hematol 104(3):324–329.  https://doi.org/10.1007/s12185-016-2060-9 CrossRefPubMedGoogle Scholar
  9. 9.
    Wohlschlegel JA et al (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290(5500):2309–2312CrossRefGoogle Scholar
  10. 10.
    Saxena S, Dutta A (2005) Geminin-Cdt1 balance is critical for genetic stability. Mutat Res 569(1–2):111–121CrossRefGoogle Scholar
  11. 11.
    Jiang ZQ et al (2017) Different effects of neuropeptide Y on proliferation of vascular smooth muscle cells via regulation of Geminin. Mol Cell Biochem 433(1-2):205–211.  https://doi.org/10.1007/s11010-017-3028-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Warner MR et al (1991) Sympathetic stimulation-evoked overflow of norepinephrine and neuropeptide Y from the heart. Circ Res 69(2):455–465CrossRefGoogle Scholar
  13. 13.
    Herring N (2015) Autonomic control of the heart: going beyond the classical neurotransmitters. Exp Physiol 100(4):354–358CrossRefGoogle Scholar
  14. 14.
    Zhu P et al (2016) The role of neuropeptide Y in the pathophysiology of atherosclerotic cardiovascular disease. Int J Cardiol 220:235–241CrossRefGoogle Scholar
  15. 15.
    Zukowska Z (2005) Atherosclerosis and angiogenesis: what do nerves have to do with it? Pharmacol Rep 57(Suppl):229–234PubMedGoogle Scholar
  16. 16.
    Karamitros D et al (2014) Life without geminin. Cell Cycle 9(16):3201–3205CrossRefGoogle Scholar
  17. 17.
    Suchyta M, Miotto B, McGarry TJ (2015) An inactive geminin mutant that binds cdt1. Genes (Basel) 6(2):252–266CrossRefGoogle Scholar
  18. 18.
    Zhou B et al (2012) Structural basis for homeodomain recognition by the cell-cycle regulator Geminin. Proc Natl Acad Sci USA 109(23):8931–8936CrossRefGoogle Scholar
  19. 19.
    Ohtsubo M et al (2008) Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity. Proc Natl Acad Sci USA 105(30):10396–10401CrossRefGoogle Scholar
  20. 20.
    Ohno Y et al (2010) Hoxb4 transduction down-regulates Geminin protein, providing hematopoietic stem and progenitor cells with proliferation potential. Proc Natl Acad Sci USA 107(50):21529–21534CrossRefGoogle Scholar
  21. 21.
    Ohno Y et al (2013) Hoxa9 transduction induces hematopoietic stem and progenitor cell activity through direct down-regulation of geminin protein. PLoS ONE 8(1):e53161CrossRefGoogle Scholar
  22. 22.
    Haruki T et al (2011) Geminin expression in small lung adenocarcinomas: implication of prognostic significance. Lung Cancer 71(3):356–362CrossRefGoogle Scholar
  23. 23.
    DePamphilis ML (2011) Spotlight on geminin. Breast Cancer Res 13(3):109CrossRefGoogle Scholar
  24. 24.
    Liu E et al (2004) Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem 279(17):17283–17288CrossRefGoogle Scholar
  25. 25.
    Nishitani H et al (2001) The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S‑phase. J Biol Chem 276(48):44905–44911CrossRefGoogle Scholar
  26. 26.
    Guo J, Sun N (2013) Cell cycle regulator geminin is dispensable for the proliferation of vascular smooth muscle cells. Sci China Life Sci 56(8):731–738CrossRefGoogle Scholar
  27. 27.
    Rensen SS, Doevendans PA, van Eys GJ (2007) Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 15(3):100–108CrossRefGoogle Scholar
  28. 28.
    Hao H, Gabbiani G, Bochaton-Piallat ML (2003) Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol 23(9):1510–1520CrossRefGoogle Scholar
  29. 29.
    Dimaki M et al (2013) Cell cycle-dependent subcellular translocation of the human DNA licensing inhibitor geminin. J Biol Chem 288(33):23953–23963CrossRefGoogle Scholar
  30. 30.
    Masuo K et al (2010) The role of sympathetic nervous activity in renal injury and end-stage renal disease. Hypertens Res 33(6):521–528CrossRefGoogle Scholar
  31. 31.
    Schroeder C, Jordan J (2012) Norepinephrine transporter function and human cardiovascular disease. Am J Physiol Heart Circ Physiol 303(11):H1273–H1282CrossRefGoogle Scholar
  32. 32.
    Katz DP et al (2016) Benzylpiperazine: “a messy drug”. Drug Alcohol Depend 164:1–7CrossRefGoogle Scholar
  33. 33.
    Zukowska-Grojec Z et al (1998) Mechanisms of vascular growth-promoting effects of neuropeptide Y: role of its inducible receptors. Regul Pept 75–76:231–238CrossRefGoogle Scholar
  34. 34.
    Saleh Al-Shehabi T, Iratni R, Eid AH (2016) Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells. Phytomedicine 23(11):1068–1081CrossRefGoogle Scholar
  35. 35.
    Abe K, Tilan JU, Zukowska Z (2007) NPY and NPY receptors in vascular remodeling. Curr Top Med Chem 7(17):1704–1709CrossRefGoogle Scholar
  36. 36.
    Crnkovic S et al (2014) NPY/Y(1) receptor-mediated vasoconstrictory and proliferative effects in pulmonary hypertension. Br J Pharmacol 171(16):3895–3907CrossRefGoogle Scholar
  37. 37.
    Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362(6423):801–809CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cardiology, Southwest HospitalThird Military Medical UniversityChongqingChina
  2. 2.School of Health Science, IIIawarra Health and Medical Research InstituteUniversity of WollongongWollongong CityAustralia

Personalised recommendations