Advertisement

Herz

, Volume 44, Issue 8, pp 756–758 | Cite as

Mutations in genes associated with either myopathy or noncompaction

  • J. FinstererEmail author
  • C. Stollberger
Letter to the editors

Left ventricular hypertrabeculation (LVHT), also known as noncompaction, is a myocardial abnormality of unknown etiology. However, LVHT occurs with an increased prevalence in patients with a neuromuscular disorder (NMD) [1] or a chromosomal defect [2], in athletes [3], in pregnant women [4], and in black Africans [5]. In pregnant women, LVHT is reversible after pregnancy, suggesting that LVHT can be the consequence of an adaptational process and is not necessarily congenital.

During recent years, LVHT has been found in association with an increasing number of mutated genes, but a causal relation between these mutations and LVHT has not been proven thus far. Some of these mutated genes are known to also cause an NMD and there are a number of reports documenting that LVHT occurs together with NMDs [ 2]. NMDs in which LVHT is most prevalent include mitochondrial disorders (MIDs), Barth syndrome, dystrophinopathies (Duchenne and Becker muscular dystrophy), myotonic dystrophy type-1, and...

Mutationen, die mit Myopathie oder Noncompaction assoziiert sind

Notes

Conflict of interest

J. Finsterer and C. Stollberger declare that they have no competing interests.

References

  1. 1.
    Finsterer J, Stöllberger C (2013) Unclassified cardiomyopathies in neuromuscular disorders. Wien Med Wochenschr 163:505–513CrossRefGoogle Scholar
  2. 2.
    Finsterer J (2009) Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatr Cardiol 30:659–681CrossRefGoogle Scholar
  3. 3.
    Gati S, Chandra N, Bennett RL et al (2013) Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart 99:401–408CrossRefGoogle Scholar
  4. 4.
    Gati S, Papadakis M, Papamichael ND et al (2014) Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation 130:475–483CrossRefGoogle Scholar
  5. 5.
    Peters F, Khandheria BK, dos Santos C et al (2012) Isolated left ventricular noncompaction in sub-Saharan Africa: a clinical and echocardiographic perspective. Circ Cardiovasc Imaging 5:187–193CrossRefGoogle Scholar
  6. 6.
    Wessels MW, Herkert JC, Frohn-Mulder IM et al (2015) Compound heterozygous or homozygous truncating MYBPC3 mutations cause lethal cardiomyopathy with features of noncompaction and septal defects. Eur J Hum Genet 23:922–928CrossRefGoogle Scholar
  7. 7.
    Tajsharghi H, Leren TP, Abdul-Hussein S et al (2010) Unexpected myopathy associated with a mutation in MYBPC3 and misplacement of the cardiac myosin binding protein C. J Med Genet 47:575–577CrossRefGoogle Scholar
  8. 8.
    Chang B, Nishizawa T, Furutani M et al (2011) Identification of a novel TPM1 mutation in a family with left ventricular noncompaction and sudden death. Mol Genet Metab 102:200–206CrossRefGoogle Scholar
  9. 9.
    Clarke NF (2008) Skeletal muscle disease due to mutations in tropomyosin, troponin and cofilin. Adv Exp Med Biol 642:40–54CrossRefGoogle Scholar
  10. 10.
    Dellefave LM, Pytel P, Mewborn S, Mora B, Guris DL, Fedson S, Waggoner D, Moskowitz I, McNally EM (2009) Sarcomere mutations in cardiomyopathy with left ventricular hypertrabeculation. Circ Cardiovasc Genet 2:442–449CrossRefGoogle Scholar
  11. 11.
    Jungbluth H, Sewry CA, Brown SC et al (2001) Mild phenotype of nemaline myopathy with sleep hypoventilation due to a mutation in the skeletal muscle alpha-actin (ACTA1) gene. Neuromuscul Disord 11:35–40CrossRefGoogle Scholar
  12. 12.
    Miszalski-Jamka K, Jefferies JL, Mazur W et al (2017) Novel Genetic Triggers and Genotype-Phenotype Correlations in Patients With Left Ventricular Noncompaction. Circ Cardiovasc Genet.  https://doi.org/10.1161/CIRCGENETICS.117.001763 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lornage X, Malfatti E, Chéraud C et al (2017) Recessive MYPN mutations cause cap myopathy with occasional nemaline rods. Ann Neurol 81:467–473CrossRefGoogle Scholar
  14. 14.
    Zhang Q, Bethmann C, Worth NF et al (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833CrossRefGoogle Scholar
  15. 15.
    Grebe S, Ichida F, Grabitz R et al (2007) Reversed pulmonary artery flow in isolated noncompaction of the ventricular myocardium. Fetal Diagn Ther 22:29–32CrossRefGoogle Scholar
  16. 16.
    Schirmer I, Dieding M, Klauke B et al (2017) A novel desmin (DES) indel mutation causes severe atypical cardiomyopathy in combination with atrioventricular block and skeletal myopathy. Mol Genet Genomic Med.  https://doi.org/10.1002/mgg3.358 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sonam K, Bindu PS, Taly AB et al (2014) Mitochondrial myopathy, cardiomyopathy, and pontine signal changes in an adult patient with isolated complex II deficiency. J Clin Neuromuscul Dis 16:69–73CrossRefGoogle Scholar
  18. 18.
    McClung JM, McCord TJ, Ryan TE et al (2017) BAG3 (Bcl-2-Associated Athanogene-3) Coding Variant in Mice Determines Susceptibility to Ischemic Limb Muscle Myopathy by Directing Autophagy. Circulation 136:281–296CrossRefGoogle Scholar
  19. 19.
    Fichna JP, Potulska-Chromik A, Miszta P et al (2016) A novel dominant D109A CRYAB mutation in a family with myofibrillar myopathy affects αB-crystallin structure. BBA Clin 7:1–7Google Scholar
  20. 20.
    Ismail S, Schaffer AE, Rosti RO et al (2014) Novel mutation in the fukutin gene in an Egyptian family with Fukuyama congenital muscular dystrophy and microcephaly. Gene 539:279–282CrossRefGoogle Scholar
  21. 21.
    Rossi D, Palmio J, Evilä A et al (2017) A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy. PLoS One 12(10):e0186642.  https://doi.org/10.1371/journal.pone.0186642 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26.  https://doi.org/10.1186/1750-1172-3-26 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Weterman MA, Barth PG, van Spaendonck-Zwarts KY et al (2013) Recessive MYL2 mutations cause infantile type I muscle fibre disease and cardiomyopathy. Brain 136(Pt 1):282–293Google Scholar
  24. 24.
    Hedberg-Oldfors C, Oldfors A (2015) Polyglucosan storage myopathies. Mol Aspects Med 46:85–100CrossRefGoogle Scholar
  25. 25.
    Murialdo G, Piazzi A, Badolati G et al (2016) Oculo-auriculo-vertebral spectrum with myopathy and velopharyngeal insufficiency. A case report with a non-branchiomeric muscle biopsy. Pediatr Med Chir 38(2):121CrossRefGoogle Scholar
  26. 26.
    Rienhoff HY Jr, Yeo CY, Morissette R et al (2013) A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome. Am J Med Genet A 161A:2040–2046PubMedGoogle Scholar
  27. 27.
    Carr AS, Pelayo-Negro AL, Jaunmuktane Z et al (2015) Transthyretin V122I amyloidosis with clinical and histological evidence of amyloid neuropathy and myopathy. Neuromuscul Disord 25:511–515CrossRefGoogle Scholar
  28. 28.
    Ennis J, Dyment DA, Michaud J, McMillan HJ (2015) Congenital Nemaline Myopathy: The Value of Magnetic Resonance Imaging of Muscle. Can J Neurol Sci 42:338–340CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Krankenanstalt RudolfstiftungViennaAustria
  2. 2.2nd Medical Department with Cardiology and Intensive Care MedicineKrankenanstalt RudolfstiftungViennaAustria

Personalised recommendations