Advertisement

Herz

, Volume 44, Issue 7, pp 637–643 | Cite as

Influence of riociguat treatment on pulmonary arterial hypertension

A meta-analysis of randomized controlled trials
  • R. Zhao
  • Y. JiangEmail author
Review articles

Abstract

Background

Riociguat treatment might be beneficial for pulmonary arterial hypertension. However, the results of studies to date are controversial. We conducted a systematic review and meta-analysis to explore the influence of riociguat treatment on pulmonary arterial hypertension.

Methods

The PubMed, Embase, Web of science, EBSCO, and Cochrane Library databases were systematically searched. Randomized controlled trials (RCTs) assessing the effect of riociguat treatment on pulmonary arterial hypertension were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. This meta-analysis was performed using the random effects model.

Results

Seven RCTs were included in the meta-analysis. Compared with a control intervention in pulmonary arterial hypertension, riociguat treatment was able to substantially improve results of the six-minute walking distance (6-MWD; standardized mean difference [SMD] = 0.53; 95% CI = 0.36–0.69; p < 0.00001), EQ-5D score (SMD = 0.35; 95% CI = 0.15–0.54; p = 0.0005), and cardiac index (SMD = 0.94; 95% CI = 0.59–1.29; p < 0.00001). The Living With Pulmonary Hypertension (LPH) score (SMD = −0.33; 95% CI = −0.50–−0.17; p < 0.0001) and pulmonary vascular resistance (PVR; SMD = −0.88; 95% CI = −1.05–−0.70; p < 0.00001) were significantly reduced after riociguat treatment. There was no increase in adverse events with riociguat treatment compared with the control intervention (RR = 1.04; 95% CI = 0.98–1.09; p = 0.19).

Conclusion

Riociguat treatment for pulmonary arterial hypertension led to a significant increase in the 6‑MWD, EQ-5D score, and cardiac index, as well as a decrease in LPH score and PVR.

Keywords

Hemodynamics Pulmonary vascular resistance 6-Minute walk test Review Treatment outcome 

Einfluss der Riociguattherapie auf die pulmonalarterielle Hypertonie

Metaanalyse randomisierter kontrollierter Studien

Zusammenfassung

Hintergrund

Die Behandlung mit Riociguat ist möglicherweise bei pulmonalarterieller Hypertonie von Vorteil. Jedoch sind die bisherigen Studienergebnisse widersprüchlich. Die Autoren erstellten eine systematische Übersichtsarbeit und Metaanalyse, um den Einfluss der Riociguattherapie auf die pulmonalarterielle Hypertonie zu ermitteln.

Methoden

Die Datenbanken PubMed, Embase, Web of science, EBSCO und der Cochrane Library wurden systematisch durchsucht. In die Auswertung aufgenommen wurden randomisierte kontrollierte Studien (RCT) zur Wirkung einer Riociguattherapie auf die pulmonalarterielle Hypertonie. Unabhängig voneinander suchten 2 der Untersucher nach Artikeln, extrahierten Daten und beurteilten die Qualität der in die Auswertung eingeschlossenen Studien. Die vorliegende Metaanalyse wurde unter Verwendung des Random-Effects-Modells durchgeführt.

Ergebnisse

In die Metaanalyse wurden 7 RCT eingeschlossen. Im Vergleich zu einer Kontrollintervention bei pulmonalarterieller Hypertonie war es mit der Riociguattherapie möglich, die Ergebnisse im 6‑min-Gehtest („six-minute walking distance“, 6‑MWD; standardisierte mittlere Differenz, SMD: 0,53; 95%-Konfidenzintervall, 95%-KI: 0,36–0,69; p < 0,00001), EuroQol Group 5‑Dimension Self-Report Questionnaire, (EQ-5D; SMD = 0,35; 95%-KI = 0,15–0,54; p = 0,0005), und beim Herzindex (SMD = 0,94; 95%-KI = 0,59–1,29; p < 0,00001) wesentlich zu verbessern. Die Werte für den Fragebogen Living With Pulmonary Hypertension (LPH; SMD = −0,33; 95%-KI = −0,50–−0,17; p < 0,0001) und für den pulmonalen Gefäßwiderstand („pulmonary vascular resistance“, PVR; SMD = −0,88; 95%-KI = −1,05–−0,70; p < 0,00001) waren nach Riociguattherapie signifikant vermindert. Es gab keine Zunahme unerwünschter Ereignisse unter Riociguattherapie im Vergleich zur Kontrollintervention (RR = 1,04; 95%-KI = 0,98–1,09; p = 0,19).

Schlussfolgerung

Die Behandlung einer pulmonalarteriellen Hypertonie mit Riociguat führte zu einer signifikanten Steigerung beim 6‑MWD, EQ-5D-Score und Herzindex sowie zu einer Abnahme des LPH-Scores und des PVR.

Schlüsselwörter

Hämodynamik Lungengefäßwiderstand 6-min-Gehtest Übersichtsarbeit Therapieergebnis 

Notes

Compliance with ethical guidelines

Conflict of interest

R. Zhao and Y. Jiang declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A et al (2015) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 46(4):903–975Google Scholar
  2. 2.
    Boucherat O, Peterlini T, Bourgeois A, Nadeau V, Breuils-Bonnet S, Boilet-Molez S et al (2018) Mitochondrial HSP90 accumulation promotes vascular remodeling in pulmonary arterial hypertension. Am J Respir Crit Care Med.  https://doi.org/10.1164/rccm.201708-1751OC CrossRefPubMedGoogle Scholar
  3. 3.
    da Silva Goncalves Bos D, Van Der Bruggen CE, Kurakula K, Sun XQ, Casali KR, Casali AG et al (2017) Contribution of impaired parasympathetic activity to right ventricular dysfunction and pulmonary vascular remodeling in pulmonary arterial hypertension. Circulation 137(9):910–924.  https://doi.org/10.1161/CIRCULATIONAHA.117.027451 CrossRefPubMedGoogle Scholar
  4. 4.
    Jing ZC, Xu XQ, Han ZY, Wu Y, Deng KW, Wang H et al (2007) Registry and survival study in chinese patients with idiopathic and familial pulmonary arterial hypertension. Chest 132:373–379CrossRefGoogle Scholar
  5. 5.
    Chibana H, Tahara N, Itaya N, Ishimatsu T, Sasaki M, Sasaki M et al (2017) Pulmonary artery dysfunction in chronic thromboembolic pulmonary hypertension. Int J Cardiol Heart Vasc 17:30–32PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ghofrani HA, D’Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH et al (2013) Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med 369:319–329CrossRefGoogle Scholar
  7. 7.
    McLaughlin VV, Jansa P, Nielsen-Kudsk JE, Halank M, Simonneau G, Grunig E et al (2017) Riociguat in patients with chronic thromboembolic pulmonary hypertension: results from an early access study. BMC Pulm Med 17:216CrossRefGoogle Scholar
  8. 8.
    Murata M, Kawakami T, Kataoka M, Kohno T, Itabashi Y, Fukuda K (2018) Riociguat, a soluble guanylate cyclase stimulator, ameliorates right ventricular contraction in pulmonary arterial hypertension. Pulm Circ 8:2045893217746111CrossRefGoogle Scholar
  9. 9.
    Grimminger F, Weimann G, Frey R, Voswinckel R, Thamm M, Bolkow D et al (2009) First acute haemodynamic study of soluble guanylate cyclase stimulator riociguat in pulmonary hypertension. Eur Respir J 33:785–792CrossRefGoogle Scholar
  10. 10.
    Stasch JP, Pacher P, Evgenov OV (2011) Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123:2263–2273CrossRefGoogle Scholar
  11. 11.
    Yamamoto K, Tanabe N, Suda R, Sasaki A, Matsumura A, Ema R et al (2017) Riociguat for patients with chronic thromboembolic pulmonary hypertension: Usefulness of transitioning from phosphodiesterase type 5 inhibitor. Respir Investig 55:270–275CrossRefGoogle Scholar
  12. 12.
    Ghofrani HA, Hoeper MM, Halank M, Meyer FJ, Staehler G, Behr J et al (2010) Riociguat for chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension: a phase II study. Eur Respir J 36:792–799CrossRefGoogle Scholar
  13. 13.
    Rosenkranz S, Ghofrani HA, Beghetti M, Ivy D, Frey R, Fritsch A et al (2015) Riociguat for pulmonary arterial hypertension associated with congenital heart disease. Heart 101:1792–1799CrossRefGoogle Scholar
  14. 14.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535CrossRefGoogle Scholar
  15. 15.
    Higgins JPTGS (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated march 2011. The Cochrane Collaboration, www.cochrane-handbook.orgGoogle Scholar
  16. 16.
    Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12CrossRefGoogle Scholar
  17. 17.
    Kjaergard LL, Villumsen J, Gluud C (2001) Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med 135:982–989CrossRefGoogle Scholar
  18. 18.
    Galie N, Grimminger F, Grunig E, Hoeper MM, Humbert M, Jing ZC et al (2017) Comparison of hemodynamic parameters in treatment-naive and pre-treated patients with pulmonary arterial hypertension in the randomized phase III PATENT-1 study. J Heart Lung Transplant 36:509–519CrossRefGoogle Scholar
  19. 19.
    Ghofrani HA, Galie N, Grimminger F, Grunig E, Humbert M, Jing ZC et al (2013) Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369:330–340CrossRefGoogle Scholar
  20. 20.
    Kim NH, D’Armini AM, Grimminger F, Grunig E, Hoeper MM, Jansa P et al (2017) Haemodynamic effects of riociguat in inoperable/recurrent chronic thromboembolic pulmonary hypertension. Heart 103:599–606CrossRefGoogle Scholar
  21. 21.
    Bonderman D, Pretsch I, Steringer-Mascherbauer R, Jansa P, Rosenkranz S, Tufaro C et al (2014) Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (DILATE-1). Chest 146:1274–1285CrossRefGoogle Scholar
  22. 22.
    Bonderman D, Ghio S, Felix SB, Ghofrani HA, Michelakis E, Mitrovic V et al (2013) Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation 128:502–511CrossRefGoogle Scholar
  23. 23.
    Klinger JR, Abman SH, Gladwin MT (2013) Nitric oxide deficiency and endothelial dysfunction in pulmonary arterial hypertension. Am J Respir Crit Care Med 188:639–646CrossRefGoogle Scholar
  24. 24.
    Khouri C, Lepelley M, Roustit M, Montastruc F, Humbert M, Cracowski JL (2017) Comparative safety of drugs targeting the nitric oxide pathway in pulmonary hypertension: a mixed approach combining a meta-analysis of clinical trials and a disproportionality analysis from the world health organization pharmacovigilance database. Chest.  https://doi.org/10.1016/j.chest.2017.12.008 CrossRefPubMedGoogle Scholar
  25. 25.
    Follmann M, Griebenow N, Hahn MG, Hartung I, Mais FJ, Mittendorf J et al (2013) The chemistry and biology of soluble guanylate cyclase stimulators and activators. Angew Chem Int Ed Engl 52:9442–9462CrossRefGoogle Scholar
  26. 26.
    Stasch JP, Hobbs AJ (2009) NO-independent, haem-dependent soluble guanylate cyclase stimulators. Handb Exp Pharmacol.  https://doi.org/10.1007/978-3-540-68964-5_13 CrossRefPubMedGoogle Scholar
  27. 27.
    Christou H, Hudalla H, Michael Z, Filatava EJ, Li J, Zhu M et al (2018) Impaired pulmonary arterial vasoconstriction and nitric oxide-mediated relaxation underlie severe pulmonary hypertension in the sugen-hypoxia rat model. J Pharmacol Exp Ther 364:258–274CrossRefGoogle Scholar
  28. 28.
    McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR et al (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53:1573–1619CrossRefGoogle Scholar
  29. 29.
    Galie N, Olschewski H, Oudiz RJ, Torres F, Frost A, Ghofrani HA et al (2008) Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation 117:3010–3019CrossRefGoogle Scholar
  30. 30.
    Olschewski H, Simonneau G, Galie N, Higenbottam T, Naeije R, Rubin LJ et al (2002) Inhaled iloprost for severe pulmonary hypertension. N Engl J Med 347:322–329CrossRefGoogle Scholar
  31. 31.
    Bonderman D, Skoro-Sajer N, Jakowitsch J, Adlbrecht C, Dunkler D, Taghavi S et al (2007) Predictors of outcome in chronic thromboembolic pulmonary hypertension. Circulation 115:2153–2158CrossRefGoogle Scholar
  32. 32.
    Condliffe R, Kiely DG, Gibbs JS, Corris PA, Peacock AJ, Jenkins DP et al (2009) Prognostic and aetiological factors in chronic thromboembolic pulmonary hypertension. Eur Respir J 33:332–338CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of UltrasonicChongQing Traditional Chinese Medicine HospitalChongqingChina

Personalised recommendations