pp 1–8 | Cite as

Lipidsenkende Therapie im Alter

Wer profitiert von welchem Zielwert?


Die Senkung des LDL(„low-density lipoprotein“)-Cholesterins (LDL-C) reduziert erwiesenermaßen die Inzidenz kardio- und zerebrovaskulärer Ereignisse und senkt die Mortalität. Bisherige Zielwertempfehlungen machten keine Angaben zur Dauer einer Cholesterinsenkung und orientierten sich bisher stark an ökonomischen Beschränkungen und derzeit verfügbaren Pharmaka. Vor dem Hintergrund des Preisverfalls für Statine als wesentlichem Therapeutikum und der erhöhten Effektivität therapeutischer Möglichkeiten kann sich heute die Behandlung an Zielwerten orientieren, die einen optimalen Effekt bis ins hohe Alter erwarten lassen. Der günstigste Spiegel des LDL-C für die Primärprävention liegt um und unter 100 mg/dl, allerdings bei Einhalten dieses niedrigen Spiegels durchgängig von Jugend an. Bei jeder später einsetzenden Cholesterinsenkung muss mit bereits ersten atheromatösen Ablagerungen gerechnet werden. Daher gleicht sich das Behandlungsoptimum mit Alter und weiteren Risikofaktoren zunehmend den Erfahrungswerten aus der Sekundärprävention an. Sowohl Messungen des Effekts einer Cholesterinsenkung auf das Volumen atheromatöser Plaques als auch auf die Inzidenz vaskulärer Ereignisse deuten auf einen Zielwert für das LDL-C deutlich unter 70 mg/dl im Bereich von 50–60 mg/dl hin. Bei Beginn der Cholesterinsenkung im höheren Alter ist mit einem geringeren Effekt zu rechnen, aber aufgrund der zunehmenden Inzidenzrate mit einer höheren Anzahl vermeidbarer Ereignisse, sodass die Effizienz nicht notwendigerweise abnimmt. Langzeituntersuchungen weisen allerdings darauf hin, dass frühere Cholesterinsenkung auch noch nach mehr als einem Jahrzehnt einen Vorteil bietet, der eher noch zunimmt. Daher ist für eine optimale kardiovaskuläre Prävention der frühe Beginn moderater Maßnahmen zum lebenslangen Erhalt eines LDL-C unter 100 mg/dl empfehlenswert.


Cholesterin Statine Zielwert Kardiovaskuläre Prävention Senioren 

Lipid-lowering therapy in the elderly

Who profits from which target values?


Lowering low-density lipoprotein (LDL) cholesterol levels has been proven to reduce the incidence of cardiovascular and cerebrovascular events and mortality. So far recommendations have not provided information as to a meaningful duration of cholesterol-lowering therapy and were largely guided by economic constraints and limited therapeutic options. In light of the decline in the price of statins, the essential therapeutic agent and the increased efficacy of therapeutic options, treatment can nowadays be geared to target values that can be expected to have an optimal effect even in old age. The most favorable level of LDL-cholesterol for primary prevention is around and below 100 mg/dl, provided continuous adherence to these low levels from adolescence onwards. With later onset of cholesterol reduction the existence of initial atheromatous deposits must be expected. Therefore, with age and the manifestation of other risk factors the optimal treatment targets increasingly converge to those for which experience has been gained from secondary prevention. Both measurements of the effect of cholesterol lowering on the volume of atheromatous plaques and of the incidence of vascular events indicate a target for LDL-cholesterol well below 70 mg/dl and in the range 50–60 mg/dl. At the onset of cholesterol lowering in advanced age, a smaller effect has to be expected but due to the increasing incidence rate of vascular events a higher number of events may be avoided; thus, the efficiency does not necessarily decrease; however, long-term studies indicate that earlier cholesterol lowering provides an advantage for more than a decade, in terms of preventing vascular disease, which tends to increase. Therefore, optimal cardiovascular prevention involves moderate measures to maintain the LDL-cholesterol below 100 mg/dl lifelong from childhood on.


Cholesterol Statins Target value Cardiovascular prevention Aged 


Einhaltung ethischer Richtlinien


E. Windler, F.-U. Beil, G. Klose und J. Thiery geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.


  1. 1.
    Silverman MG, Ference BA, Im K et al (2016) Association between lowering LDL-C and cardiovascular risk reductionamong different therapeutic interventions: a systematic review and meta-analysis. JAMA 316:1289–1297CrossRefPubMedGoogle Scholar
  2. 2.
    Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376:1670–1681CrossRefGoogle Scholar
  3. 3.
    Stamler J, Wentworth D, Neaton JD (1986) Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 256:2823–2828CrossRefPubMedGoogle Scholar
  4. 4.
    Lewington S, Whitlock G, Clarke R et al (2007) Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370:1829–1839CrossRefPubMedGoogle Scholar
  5. 5.
    Aoki J, Uchino K (2011) Treatment of risk factors to prevent stroke. Neurotherapeutics 8:463–474CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Boekholdt SM, Arsenault BJ, Mora S et al (2012) Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA 307:1302–1309CrossRefPubMedGoogle Scholar
  7. 7.
    Assmann G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation 105:310–315CrossRefPubMedGoogle Scholar
  8. 8.
    Menotti A, Keys A, Aravanis C et al (1989) Seven Countries Study. First 20-year mortality data in 12 cohorts of sixcountries. Ann Med 21:175–179CrossRefPubMedGoogle Scholar
  9. 9.
    Bernhardt R, Feng Z, Deng Y, Wang Z, Zeng J, Cheng S, Cremer P, Thiery J, Seidel D, Schettler G (1987) Coronary risk factors in China: a comparative study of middle-aged workers in China and Germany. In: Stehle G, Bernhardt R (Hrsg) Coronary Risk Factors in Japan and China. Springer, Berlin, Heidelberg, S 22–53CrossRefGoogle Scholar
  10. 10.
    Kaplan H, Thompson RC, Trumble BC et al (2017) Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet 389:1730–1739CrossRefPubMedGoogle Scholar
  11. 11.
    Assmann G, Schulte H, Cullen P, Seedorf U (2007) Assessing risk of myocardial infarction and stroke: new data from the Prospective Cardiovascular Münster (PROCAM) study. Eur J Clin Invest 37:925–932CrossRefPubMedGoogle Scholar
  12. 12.
    Cremer P, Muche R, Kruse-Lösler B et al (1989) Risk of myocardial infarct in 40 to 60-year-old males in relation to potential risk factors of atherosclerosis. Intermediate evaluation of the Göttingen risk, incidence and prevalence study following a 5-year observation period. Versicherungsmedizin 41:154–162PubMedGoogle Scholar
  13. 13.
    Zyriax BC, Boeing H, Windler E (2005) Nutrition is a powerful independent risk factor for coronary heart disease in women—The CORA study: a population-based case-control study. Eur J Clin Nutr 59:1201–1207CrossRefPubMedGoogle Scholar
  14. 14.
    Boekholdt SM, Hovingh GK, Mora S et al (2014) Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J Am Coll Cardiol 64:485–494CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272CrossRefPubMedGoogle Scholar
  16. 16.
    Kathiresan S, Myocardial Infarction Genetics Consortium (2008) A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med 358:2299–2300CrossRefPubMedGoogle Scholar
  17. 17.
    Ference BA, Majeed F, Penumetcha R et al (2015) Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 × 2 factorial Mendelian randomization study. J Am Coll Cardiol 65:1552–1561CrossRefPubMedGoogle Scholar
  18. 18.
    Tuzcu EM, Kapadia SR, Tutar E et al (2001) High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation 103:2705–2710CrossRefPubMedGoogle Scholar
  19. 19.
    Cannon CP, Blazing MA, Giugliano RP et al (2015) Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372:2387–2397CrossRefPubMedGoogle Scholar
  20. 20.
    Shepherd J, Blauw GJ, Murphy MB et al (2002) Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 360:1623–1630CrossRefPubMedGoogle Scholar
  21. 21.
    Pedersen TR, Olsson AG, Faergeman O et al (1998) Lipoprotein changes and reduction in the incidence of major coronary heart disease events in the Scandinavian Simvastatin Survival Study (4S). Circulation 97:1453–1460CrossRefPubMedGoogle Scholar
  22. 22.
    Kane JP, Malloy MJ, Ports TA et al (1990) Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA 264:3007–3012CrossRefPubMedGoogle Scholar
  23. 23.
    Ornish D, Scherwitz LW, Billings JH et al (1998) Intensive lifestyle changes for reversal of coronary heart disease. JAMA 280:2001–2007CrossRefPubMedGoogle Scholar
  24. 24.
    Nissen SE, Tuzcu EM, Schoenhagen P et al (2004) Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291:1071–1080CrossRefPubMedGoogle Scholar
  25. 25.
    Tardif JC, Grégoire J, L’Allier PL et al (2004) Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 110:3372–3377CrossRefPubMedGoogle Scholar
  26. 26.
    Nissen SE, Nicholls SJ, Sipahi I et al (2006) Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295:1556–1565CrossRefPubMedGoogle Scholar
  27. 27.
    Nissen SE, Tuzcu EM, Brewer HB et al (2006) Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med 354:1253–1263CrossRefPubMedGoogle Scholar
  28. 28.
    Nicholls SJ, Tuzcu EM, Sipahi I et al (2007) Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA 297:499–508CrossRefPubMedGoogle Scholar
  29. 29.
    Giugliano RP, Wiviott SD, Blazing MA et al (2017) Long-term safety and efficacy of achieving very low levels of low-density lipoprotein cholesterol : a prespecified analysis of the IMPROVE-IT trial. JAMA Cardiol 2:547–555CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Giugliano RP, Pedersen TR, Park JG et al (2017) Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet 390:1962–1971CrossRefPubMedGoogle Scholar
  31. 31.
    Nicholls SJ, Puri R, Anderson T et al (2016) Effect of evolocumab on progression of coronary disease in Statin-treated patients: the GLAGOV randomized clinical trial. JAMA 316:2373–2384CrossRefPubMedGoogle Scholar
  32. 32.
    Ridker PM, Lonn E, Paynter NP et al (2017) Primary prevention with statin therapy in the elderly: new meta-analyses from the contemporary JUPITER and HOPE-3 randomized trials. Circulation 135:1979–1981CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Präventive Medizin, Universitäres Herzzentrum HamburgUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland
  2. 2.AmbulanzzentrumUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland
  3. 3.Praxis Dres. T. Beckenbauer & S. MaierhofBremenDeutschland
  4. 4.Praxis Dres. I. van de Loo & K. SpiekerBremenDeutschland
  5. 5.Department für Diagnostik, Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare DiagnostikUniversitätsklinikum LeipzigLeipzigDeutschland

Personalised recommendations