pp 1–8 | Cite as

Cardiac MRI for detecting left atrial/left atrial appendage thrombus in patients with atrial fibrillation

Meta-analysis and systematic review
  • J. Chen
  • H. Zhang
  • D. Zhu
  • Y. Wang
  • S. Byanju
  • M. LiaoEmail author
Review articles



The aim of this meta-analysis was to evaluate the accuracy of cardiac magnetic resonance (CMR) in detecting left atrial/left atrial appendage (LA/LAA) thrombus and to analyze the difference between the diagnostic accuracy of various imaging sequences.


PubMed, Web of Science, Embase, and the Cochrane Library were systematically searched for studies from 2000 to 2017 that compared CMR with transesophageal echocardiography (TEE) in detecting LA/LAA thrombus. The CMR images were analyzed in four categories: (1) cine-CMR; (2) first-pass contrast-enhanced 3D CMR angiography (CE-MRA); (3) delayed-enhancement CMR (DE-CMR); and (4) CMR, regardless of the magnetic resonance sequences used. Descriptive and quantitative information was extracted and Meta-DiSc 1.4 was used to perform the analysis.


The analysis included 582 patients from seven publications. The pooled sensitivity, specificity, diagnostic odds ratio, positive likelihood ratio, negative likelihood ratio, and summary receiver operating characteristic of cine-CMR were 91.00%, 93.00%, 50.43, 10.04, 0.24, and 93.93%, respectively; for CE-MRA, the values were 77.00%, 97.00%, 179.21, 51.77, 0.30, and 97.63%, respectively; for DE-CMR, 100.00%, 99.00%, 849.70, 77.62, 0.09, and 99.38%, respectively; and for CMR, 80.00%, 99.00%, 187.54, 24.21, 0.17, and 97.71%, respectively.


In patients with atrial fibrillation, CMR has been proven to be a favorable diagnostic technique for the detection and assessment of LA/LAA thrombus. Among the imaging sequences evaluated, DE-CMR had the highest sensitivity, specificity, and diagnostic accuracy.


Cardiac magnetic resonance imaging Left atrium Atrial appendage Thrombosis Arrhythmia 



Atrial fibrillation


Cardiac computed tomography


Contrast-enhanced magnetic resonance angiography


Congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, prior stroke or transient ischemic attack or thromboembolism, age 65–74 years, sex category


Cardiac magnetic resonance imaging


Equilibrium phase delayed enhancement CMR


Hypertension, abnormal renal function or abnormal liver function, stroke, bleeding, labile INR, elderly, prior alcohol or drug usage history or medication usage predisposing to bleeding


Left atrial/left atrial appendage


Magnetic resonance imaging


Pulmonary veins


Transesophageal echocardiography

Kardiale MRT zur Erkennung eines Thrombus im linken Vorhof/Herzohr bei Patienten mit Vorhofflimmern

Metaanalyse und systematische Übersicht



Ziel der vorliegenden Metaanalyse war es, die Genauigkeit der kardialen Magnetresonanztomographie (CMR) bei der Diagnose eines Thrombus im linken Vorhof (linkes Atrium, LA) oder im linken Herzohr („left atrial appendage“, LAA) zu untersuchen und den Unterschied zwischen der diagnostischen Genauigkeit verschiedener Bildgebungssequenzen zu ermitteln.


Die Datenbanken PubMed, Web of Science, Embase und die Cochrane Library wurden systematisch nach Studien von 2000 bis 2017 durchsucht, in denen die CMR mit der transösophagealen Echokardiographie (TEE) bei der Erkennung eines LA-/LAA-Thrombus verglichen wurde. Die CMR-Aufnahmen wurden in 4 Kategorien ausgewertet: (1) Cine-CMR, (2) kontrastmittelverstärkte 3‑D-CMR-First-Pass-Angiographie (CE-MRA), (3) CMR mit verzögerter Kontrastverstärkung („delayed enhancement CMR“, DE-CMR) und (4) CMR, unabhängig von den verwendeten MR-Sequenzen. Daraus wurden Informationen zur Beschreibung und quantitativen Erfassung erhoben; die Auswertung erfolgte mit dem Programm Meta-DiSc 1.4.


In die Auswertung wurden 582 Patienten aus 7 Publikationen einbezogen. Die gepoolte Sensitivität, Spezifität, diagnostische Odds Ratio, der positive Wahrscheinlichkeitsquotient, der negative Wahrscheinlichkeitsquotient und der summarische Receiver-Operating-Characteristic-Wert der Cine-CMR betrugen 91,00 %; 93,00 %; 50,43; 10,04; 0,24 bzw. 93,93 %; für die CE-MRA lagen die Werte bei 77,00 %; 97,00 %; 179,21; 51,77; 0,30 bzw. 97,63 %; für die DE-CMR bei 100,00 %; 99,00 %; 849,70; 77,62; 0,09 bzw. 99,38 %, und bei der CMR betrugen die Werte 80,00 %; 99,00 %; 187,54; 24,21; 0,17 bzw. 97,71 %.


Bei Patienten mit Vorhofflimmern hat sich die CMR als vorteilhaftes diagnostisches Verfahren zur Erkennung und Beurteilung eines LA-/LAA-Thrombus erwiesen. Von den untersuchten Bildgebungssequenzen wies die DE-CMR die höchste Sensitivität, Spezifität und diagnostische Genauigkeit auf.


Kardiale Magnetresonanztomographie Linker Vorhof Herzohr Thrombose Arrhythmie 


Author contributions.

All authors approved the final version of the manuscript. M. Liao and J. Chen were involved in the conception and design of the review; J. Chen, H. Zhang, D. Zhu, Y. Wang, and S. Byanju were involved in the acquisition, analysis, and interpretation of the data.

Compliance with ethical guidelines

Conflict of interest

J. Chen, H. Zhang, D. Zhu, Y. Wang, S. Byanju, and M. Liao declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

59_2017_4676_MOESM1_ESM.docx (15 kb)
Supplementary Table 1 Study results. SEN sensitivity, SPE specificity, FN false negative, FP false positive, TN true negative, TP true positive


  1. 1.
    January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, Conti JB et al (2014) AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 64:e1–e76CrossRefPubMedGoogle Scholar
  2. 2.
    Fabritz L, Guasch E, Antoniades C, Bardinet I, Benninger G, Betts TR, Brand E et al (2016) Defining the major health modifiers causing atrial fibrillation: a roadmap to underpin personalized prevention and treatment. Nat Rev Cardiol 13:230–237CrossRefPubMedGoogle Scholar
  3. 3.
    Han SW, Nam HS, Kim SH, Lee JY, Lee KY, Heo JH (2007) Frequency and significance of cardiac sources of embolism in the TOAST classification. Cerebrovasc Dis 24:463–468CrossRefPubMedGoogle Scholar
  4. 4.
    Odell JA, Blackshear JL, Davies E, Byrne WJ, Kollmorgen CF, Edwards WD, Orszulak TA (1996) Thoracoscopic obliteration of the left atrial appendage: potential for stroke reduction. Ann Thorac Surg 61:565–569CrossRefPubMedGoogle Scholar
  5. 5.
    Jung BC, Kim NH, Nam GB, Park HW, On YK, Lee YS et al (2015) The Korean heart rhythm society’s 2014 statement on antithrombotic therapy for patients with Nonvalvular atrial fibrillation: Korean Heart Rhythm Society. Korean Circ J 45:9–19CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jaber WA, White RD, Kuzmiak SA, Boyle JM, Natale A, Apperson-Hansen C, Thomas JD et al (2004) Comparison of ability to identify left atrial thrombus by three-dimensional tomography versus transesophageal echocardiography in patients with atrial fibrillation. Am J Cardiol 93:486–489CrossRefPubMedGoogle Scholar
  7. 7.
    Stöllberger C, Günther E, Bonner E, Finsterer J, Slany J (2003) Left atrial appendage morphology: comparison of transesophageal images and postmortem casts. Z Kardiol 92:303–308CrossRefPubMedGoogle Scholar
  8. 8.
    Romero J, Husain SA, Kelesidis I, Sanz J, Medina HM, Garcia MJ (2013) Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation a Meta-analysis. Circ Cardiovasc Imaging 6:185–194CrossRefPubMedGoogle Scholar
  9. 9.
    Kim SC, Chun EJ, Choi SI, Lee SJ, Chang HJ, Han MK, Bae HJ et al (2010) Differentiation between spontaneous echocardiographic contrastand left atrial appendage thrombus in patients with suspected embolic stroke using two-phase multidetector computed tomography. Am J Cardiol 106:1174–1181CrossRefPubMedGoogle Scholar
  10. 10.
    Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, Ho VB et al (2010) ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55:2614–2662CrossRefPubMedGoogle Scholar
  11. 11.
    Yarmohammadi H, Shenoy C (2015) Cardiovascular magnetic resonance imaging before catheter ablation for atrial fibrillation: much more than left atrial and pulmonary venous anatomy. Int J Cardiol 179:461–464CrossRefPubMedGoogle Scholar
  12. 12.
    Kitkungvan D, Nabi F, Ghosn MG, Dave AS, Quinones M, Zoghbi WA, Valderrabano M et al (2016) Detection of LA and LAA thrombus by CMR in patients referred for pulmonary vein isolation. JACC Cardiovasc Imaging 9:809–818CrossRefPubMedGoogle Scholar
  13. 13.
    Rathi VK, Reddy ST, Anreddy S, Belden W, Yamrozik JA, Williams RB, Doyle M et al (2013) Contrast-enhanced CMR is equally effective as TEE in the evaluation of left atrial appendage thrombus in patients with atrial fibrillation undergoing pulmonary vein isolation procedure. Heart Rhythm 10:1021–1027CrossRefPubMedGoogle Scholar
  14. 14.
    Ohyama H, Hosomi N, Takahashi T, Mizushige K, Osaka K, Kohno M, Koziol JA (2003) Comparison of magnetic resonance imaging and transesophageal echocardiography in detection of thrombus in the left atrial appendage. Stroke 34:2436–2243CrossRefPubMedGoogle Scholar
  15. 15.
    Mohrs OK, Nowak B, Petersen SE, Welsner M, Rubel C, Magedanz A, Kauczor HU et al (2006) Thrombus detection in the left atrial appendage using contrast-enhanced MRI: a pilot study. AJR Am J Roentgenol 186:198–205CrossRefPubMedGoogle Scholar
  16. 16.
    Anreddy S, Balhan S, Yamrozik JA, Williams RB, Doyle M, Grant SB, Biederman RWW et al (2011) Is cardiovascular MRI equally effective as TEE in evaluation of left atrial appendage thrombus in patients with atrial fibrillation undergoing pulmonary vein isolation? J Cardiovasc Magn Reson 13:1–2CrossRefGoogle Scholar
  17. 17.
    Barkhausen J, Hunold P, Eggebrecht H, Schüler WO, Sabin GV, Erbel R, Debatin JF (2002) Detection and characterization of Intracardiac thrombi on MR imaging. AJR Am J Roentgenol 179:1539–1544CrossRefPubMedGoogle Scholar
  18. 18.
    Paydarfar D, Krieger D, Dib N, Blair RH, Pastore JO, Stetz JJ Jr, Symes JF (2001) In vivo magnetic resonance imaging and surgical histopathology of intracardiac masses: distinct features of subacute thrombi. Cardiology 95:40–47CrossRefPubMedGoogle Scholar
  19. 19.
    Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536CrossRefPubMedGoogle Scholar
  20. 20.
    Devillé WL, Buntinx F, Bouter LM, Montori VM, Vet HCWD, van Windt DDAWM, Bezemer PD (2002) Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC Med Res Methodol 2:9CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Deeks JJ (2001) Systematic reviews in health care: systematic reviews of evaluations of diagnostic and screening tests. BMJ 323:157–162CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Higgins JPT, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane collaboration (www. Cochrane-handbook. org)Google Scholar
  23. 23.
    Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893CrossRefPubMedGoogle Scholar
  24. 24.
    Wittkampf FH, Vonken EJ, Derksen R, Loh P, Velthuis B, Wever EF, Boersma LV, Rensing BJ, Cramer MJ (2003) Pulmonary vein ostium geometry analysis by magnetic resonance angiography. Circulation 107:21–22CrossRefPubMedGoogle Scholar
  25. 25.
    Daccarett M, McGann CJ, Akoum NW, MacLeod RS, Marrouche NF (2014) MRI of the left atrium: predicting clinical outcomes in patients with atrial fibrillation. Expert Rev Cardiovasc Ther 9:105–111CrossRefGoogle Scholar
  26. 26.
    Dill T, Neumann T, Ekinci O, Breidenbach C, John A, Erdogan A, Bachmann G et al (2003) Pulmonary vein diameter reduction after radiofrequency catheter ablation for paroxysmal atrial fibrillation evaluated by contrast-enhanced three-dimensional magnetic resonance imaging. Circulation 107:845–850CrossRefPubMedGoogle Scholar
  27. 27.
    Manning WJ, Spahillari A (2016) Combined pulmonary vein and LA/LAA thrombus assessment can CMR kill two birds with one stone? JACC Cardiovasc Imaging 9:819–821CrossRefPubMedGoogle Scholar
  28. 28.
    Zhan Y (2016) Systematic review and meta-analysis evaluating the diagnostic accuracy of cardiac magnetic resonance imaging to assess left atrial appendage thrombi. J Am Coll Cardiol 67:1833CrossRefGoogle Scholar
  29. 29.
    Omran H, Jung W, Rabahieh R, Wirtz P, Becher H, Illien S, Schimpf R et al (1999) Imaging of thrombi and assessment of left atrial appendage function: a prospective study comparing transthoracic and transoesophageal echocardiography. Heart 81:192–198CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weinsaft JW, Kim HW, Shah DJ, Klem I, Crowley AL, Brosnan R, James OG et al (2008) Detection of left ventricular thrombus by delayed-enhancement cardiovascular magnetic resonance prevalence and markers in patients with systolic dysfunction. J Am Coll Cardiol 52:148–157CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiology, ZhongNan HospitalWuHan UniversityWuhan CityChina

Personalised recommendations