Skip to main content
Log in

Computertomographie bei Patienten mit stabiler Angina Pectoris

Messung der fraktionellen Flussreserve

Computed tomography in patients with chronic stable angina

Fractional flow reserve measurement

  • Übersichten
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die koronare CT-Angiographie (cCTA) hat sich als nichtinvasive Methode zur direkten Darstellung von Erkrankungen der Herzkranzgefäße (KHK) etabliert. Mithilfe dieses Verfahrens konnte in früheren Studien eine KHK mit hoher Wahrscheinlichkeit ausgeschlossen werden. Limitierend beim Einsatz der cCTA erscheint jedoch, dass sich viele visuell signifikant eingeschätzte Stenosen, gemessen an der invasiv ermittelbaren fraktionellen Flussreserve (FFR), als nicht hämodynamisch relevant erweisen. Als eine im Vergleich zur myokardialen CT-Perfusion vielversprechende Methode zur besseren Erfassung der funktionellen Bedeutung von Koronarstenosen stellt sich die auf Erkenntnissen der numerischen Strömungsmechanik und bildbasierter Simulation beruhende, CT-basierte FFR (CT-FFR) dar. Die CT-FFR kann aus regulären CT-Datensätzen, ohne zusätzliche Bildakquisition, Kontrastmittel- oder Medikamentengabe, bestimmt werden. Es werden zwei unterschiedliche Techniken zur Ermittlung der CT-FFR unterschieden. Das initiale Verfahren erfordert eine externe CT-FFR-Berechnung durch Hochleistungsrechner, wobei die behördliche Zulassung hierfür in den USA bereits erfolgt ist. Andererseits wurde ein Software-Prototyp beschrieben, der aufgrund der Integration vereinfachter Berechnungsmodelle geringere Rechnerkapazität erfordert und somit eine intrahospitale Anwendungsmöglichkeit bietet. Im folgenden Beitrag werden diese Verfahren im Kontext mit den jeweiligen Studienergebnissen und den Daten der Metaanalysen dargestellt. Des Weiteren werden sowohl methodische Einschränkungen und Zukunftsperspektiven der CT-FFR aufgezeigt.

Abstract

Coronary computed tomography angiography (cCTA) has been established for the non-invasive diagnosis of coronary artery disease (CAD). Previous studies demonstrated the high diagnostic accuracy of cCTA, particularly for ruling out CAD. As a known limitation of cCTA a large number of visually significant coronary stenoses are found to be hemodynamically not relevant by invasive fractional flow reserve (FFR). CT-based FFR (CT-FFR) builds on recent advances in computational fluid dynamics and image simulation techniques. Along with CT myocardial perfusion imaging, CT-FFR is a promising approach towards a more accurate estimation of the hemodynamic relevance of coronary artery stenoses. CT-FFR is derived from regular CT datasets without additional image acquisitions, contrast material, or medication. Two CT-FFR techniques can be differentiated. The initial method requires external use of supercomputers and has gained approval for clinical use in the USA. Furthermore, a prototype-software has been introduced which is less computationally demanding via integration of reduced-order models for on-site calculation of CT-FFR. The present article reviews these methods in the context of available study results and meta-analyses. Furthermore, limitations and future concepts of CT-FFR are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Achenbach S (2015) Management of stable chronic coronary artery disease. Herz 40:645–654. doi:10.1007/s00059-015-4237-z

    Article  CAS  PubMed  Google Scholar 

  2. Thiele H, Dörr R, Gutberlet M (2012) Diagnostic work-up of coronary artery disease: Clinical value of different imaging methods. Herz 37:887–899. doi:10.1007/s00059-012-3688-8

    Article  CAS  PubMed  Google Scholar 

  3. Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58:1989–1997. doi:10.1016/j.jacc.2011.06.066

    Article  PubMed  Google Scholar 

  4. Min JK, Leipsic J, Pencina MJ et al (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308:1237–1245. doi:10.1001/2012.jama.11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Norgaard BL, Leipsic J, Gaur S et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps. J Am Coll Cardiol 63:1145–1155. doi:10.1016/j.jacc.2013.11.043

    Article  PubMed  Google Scholar 

  6. Gonzalez JA, Lipinski MJ, Flors L et al (2015) Meta-analysis of diagnostic performance of coronary computed tomography angiography, computed tomography perfusion, and computed tomography-fractional flow reserve in functional myocardial Ischemia assessment versus invasive fractional flow reserve. Am J Cardiol 116:1469–1478. doi:10.1016/j.amjcard.2015.07.078

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bruyne B De, Pijls NH, Kalesan B et al (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367:991–1001. doi:10.1056/NEJMoa1205361

    Article  PubMed  Google Scholar 

  8. Tonino PA, Bruyne B De, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224. doi:10.1056/NEJMoa0807611

    Article  CAS  PubMed  Google Scholar 

  9. Pijls NH, Schaardenburgh P van, Manoharan G et al (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis: 5‑year follow-up of the DEFER Study. J Am Coll Cardiol 49:2105–2111. doi:10.1016/j.jacc.2007.01.087

    Article  PubMed  Google Scholar 

  10. Windecker S, Kolh P, Alfonso F et al (2014) 2014 ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 35:2541–2619. doi:10.1093/eurheartj/ehu278

    Article  PubMed  Google Scholar 

  11. Nef H, Renker M, Hamm CW (2014) ESC/EACTS guidelines on myocardial revascularization: Amendments 2014. Herz 39:913–918. doi:10.1007/s00059-014-4180-4

    Article  CAS  PubMed  Google Scholar 

  12. Kim HJ, Vignon-Clementel IE, Coogan JS et al (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38:3195–3209. doi:10.1007/s10439-010-0083-6

    Article  CAS  PubMed  Google Scholar 

  13. Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61:2233–2241. doi:10.1016/j.jacc.2012.11.083

    Article  PubMed  Google Scholar 

  14. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  PubMed  Google Scholar 

  15. Sharma P, Itu L, Zheng X et al (2012) A framework for personalization of coronary flow computations during rest and hyperemia. Conf Proc IEEE Eng Med Biol Soc 2012:6665–6668. doi:10.1109/EMBC.2012.6347523

    PubMed  Google Scholar 

  16. Min JK, Berman DS, Budoff MJ et al (2011) Rationale and design of the DeFACTO (Determination of Fractional Flow Reserve by Anatomic Computed Tomographic AngiOgraphy) study. J Cardiovasc Comput Tomogr 5:301–309. doi:10.1016/j.jcct.2011.08.003

    Article  PubMed  Google Scholar 

  17. Gaur S, Achenbach S, Leipsic J et al (2013) Rationale and design of the HeartFlowNXT (HeartFlow analysis of coronary blood flow using CT angiography: NeXt sTeps) study. J Cardiovasc Comput Tomogr 7:279–288. doi:10.1016/j.jcct.2013.09.003

    Article  PubMed  Google Scholar 

  18. Baumann S, Wang R, Schoepf UJ et al (2015) Coronary CT angiography-derived fractional flow reserve correlated with invasive fractional flow reserve measurements – initial experience with a novel physician-driven algorithm. Eur Radiol 25:1201–1207. doi:10.1007/s00330-014-3482-5

    Article  PubMed  Google Scholar 

  19. Itu L, Sharma P, Mihalef V et al (2012) A patient-specific reduced-order model for coronary circulation. 9th IEEE Int Symp Biomed Imaging. doi:10.1109/ISBI.2012.6235677

    Google Scholar 

  20. Renker M, Schoepf UJ, Wang R et al (2014) Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol 114:1303–1308. doi:10.1016/j.amjcard.2014.07.064

    Article  PubMed  Google Scholar 

  21. Coenen A, Lubbers MM, Kurata A et al (2015) Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology 274:674–683. doi:10.1148/radiol.14140992

    Article  PubMed  Google Scholar 

  22. Douglas PS, Pontone G, Hlatky MA et al (2015) Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRct: outcome and resource impacts study. Eur Heart J 36:3359–3367. doi:10.1093/eurheartj/ehv444

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hlatky MA, Bruyne B De, Pontone G et al (2015) Quality-of-Life and Economic Outcomes of Assessing Fractional Flow Reserve With Computed Tomography Angiography: PLATFORM. J Am Coll Cardiol 66:2315–2323. doi:10.1016/j.jacc.2015.09.051

    Article  PubMed  Google Scholar 

  24. Norgaard BL, Jensen JM, Leipsic J (2015) Fractional flow reserve derived from coronary CT angiography in stable coronary disease: a new standard in non-invasive testing? Eur Radiol 25:2282–2290. doi:10.1007/s00330-015-3619-1

    Article  CAS  PubMed  Google Scholar 

  25. Min JK, Koo BK, Erglis A et al (2012) Usefulness of noninvasive fractional flow reserve computed from coronary computed tomographic angiograms for intermediate stenoses confirmed by quantitative coronary angiography. Am J Cardiol 110:971–976. doi:10.1016/j.amjcard.2012.05.033

    Article  PubMed  Google Scholar 

  26. Nakazato R, Park HB, Berman DS et al (2013) Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging 6:881–889. doi:10.1161/CIRCIMAGING.113.000297

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Renker.

Ethics declarations

Interessenkonflikt

U. J. Schoepf erhält Forschungsmittel und/oder Honorare von Astellas (Tokyo, Japan), Bayer (Wayne, NJ, USA), Bracco (Princeton, NJ, USA), GE Healthcare (Little Chalfont, Buckinghamshire, UK), Guerbet (Villepinte, Frankreich), Medrad (Warrendale, PA, USA) und Siemens Healthcare (Malvern, PA, USA). H. Möllmann erhält Beratungs- und Vortragshonorare von St. Jude Medical (St. Paul, MN, USA). M. Renker, T. Becher, N. Krampulz, W. Kim, A. Rolf, C. W. Hamm, T. Henzler, M. Borggrefe, I. Akin und S. Baumann geben an, dass kein Interessenkonflikt besteht. Messungen der CT-basierten fraktionellen Flussreserve in den Bildbeispielen wurden nicht in den USA erhoben.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renker, M., Schoepf, U.J., Becher, T. et al. Computertomographie bei Patienten mit stabiler Angina Pectoris. Herz 42, 51–57 (2017). https://doi.org/10.1007/s00059-016-4433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-016-4433-5

Schlüsselwörter

Keywords

Navigation