Skip to main content
Log in

Increased serum levels of GDF-15 associated with mortality and subclinical atherosclerosis in patients on maintenance hemodialysis

Erhöhte Serum-GDF-15-Level sind assoziiert mit Mortalität und subklinische Atherosklerose bei Langzeit-Hämodialyse-Patienten

  • Original article
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background/aims

Increased carotid intima–media thickness (CIMT) was shown to be an independent predictor of cardiovascular (CV) mortality in dialysis patients and the general population. Growth differentiation factor 15 (GDF-15), a member of the transforming growth factor superfamily, is produced by cardiomyocytes and atherosclerotic lesions under stress conditions such as inflammation. We assessed associations between serum concentrations of GDF-15, mortality, and CIMT for subclinical atherosclerosis in hemodialysis (HD) patients.

Methods

A total of 87 patients on maintenance hemodialysis and 45 sex- and age-matched healthy controls were included in this prospective study. Serum GDF-15 levels were measured by ELISA. CIMT was assessed by Doppler ultrasonography. The association between serum GDF-15 levels and mortality was assessed using Cox regression analysis with serum levels categorized into two groups according to the median value (328.18 pg/ml). Patients were followed for 2 years and cause-specific and all-cause mortality were determined.

Results

The median level of serum GDF-15 was significantly higher in HD patients than controls [328 (198–522) vs. 176 (101–289) pg/ml, p < 0.01, respectively]. Serum GDF-15 levels were correlated to CIMT (r = 0.607, p < 0.001), C-reactive protein (CRP; r = 0.250, p = 0.010), HD duration (r = 0.376, p = 0.004), and serum albumin (r = − 0.156, p = 0.030). The multivariate analysis revealed that GDF-15 was found to be an independent variable of CIMT in HD patients. In the study, the serum GDF-15 level was an independent marker of all-cause of mortality when adjusted for age, CRP, and history of diabetes mellitus.

Conclusion

The relationship between serum GDF-15, mortality, and carotid artery thickening suggests that GDF-15 may be a novel marker of atherosclerosis, inflammation, and malnutrition in HD patients.

Zusammenfassung

Hintergrund/Ziele

Eine erhöhte Intima-Media-Dicke der A. carotis (CIMT) ist nachgewiesen als unabhängiger Prädiktor der kardiovaskulären Mortalität, sowohl bei Hämodialyse(HD-)Patienten als auch der Allgemeinbevölkerung. Der Wachstumsdifferenzierungsfaktor 15 (GDF-15) aus der TGF(„transforming growth factors“)-Superfamilie wird von Kardiomyozyten und in atherosklerotischen Läsionen unter Stressbedingungen gebildet, z. B. bei Inflammation. Bestimmt wurden Assoziationen zwischen GDF-15-Serumkonzentrationen, Mortalität und CIMT für eine subklinische Atherosklerose bei Hämodialysepatienten.

Methoden

Insgesamt wurden 87 Dauer-HD-Patienten und 45 geschlechts- und altersgematchte Kontrollprobanden in die prospektive Studie aufgenommen. Die GDF-15-Serumkonzentrationen wurden per ELISA bestimmt, die CIMT mit Dopplersonographie. Assoziationen zwischen Serum-GDF-15-Konzentrationen und Mortalität wurden überprüft mittels Cox-Regressionsanalyse. Ausgehend vom Median (328,18 pg/ml) wurden 2 Gruppen gebildet. Die Follow-up-Phase war 2 Jahre lang, ermittelt wurden krankheitsspezifische wie generelle Mortalität.

Ergebnisse

Die mediane Konzentration von GDF-15 im Serum war bei HD-Patienten im Vergleich mit den Kontrollen signifikant höher [328 (198–522) vs. 176 (101–289) pg/ml, p < 0,01]. Korreliert mit Serum-GDF-15-Konzentrationen wurden C-reaktives Protein (CRP; r = 0,250, p = 0,010), Dauer der Dialyse (r = 0,376, p = 0,004) und Albuminkonzentration im Serum (r = − 0,156, p = 0,030). In der multivariaten Analyse erwies sich GDF-15 als eine unabhängige Variable für CIMT bei HD-Patienten. Ferner war die Serum-GDF-15-Konzentrationen nach Adjustierung für Alter, CRP und Diabetes-mellitus-Anamnese ein unabhängiger Marker für Mortalität allgemein.

Fazit

Die Beziehung zwischen GDF-15-Serumkonzentrationen, Mortalität und erhöhter CIMT weist darauf hin, dass GDF-15 ein innovativer Marker für Atherosklerose, Inflammation und Mangelernährung bei HD-Patienten sein könnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Villar E, Remontet L, Labeeuw M, Ecochard R (2007) Effect of age, gender, and diabetes on excess death in end-stage renal failure. J Am Soc Nephrol 18(7):2125–2134

    Article  PubMed  Google Scholar 

  2. Cheung AK, Sarnak MJ, Yan G et al (2004) Cardiac diseases in maintenance hemodialysis patients: results of the HEMO Study. Kidney Int 65(6):2380–2389

    Article  PubMed  Google Scholar 

  3. Foley RN, Parfrey PS, Sarnak MJ (1998) Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 32(5 suppl 3):S112–S119

    Article  CAS  PubMed  Google Scholar 

  4. Foley RN, Parfrey PS, Sarnak MJ (1998) Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol 9(Suppl 12):S16–S23

    CAS  PubMed  Google Scholar 

  5. Foley RN, Parfrey PS, Harnett JD et al (1995) Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int 47:186–192

    Article  CAS  PubMed  Google Scholar 

  6. Stack AG, Bloemberger WE (2001) Prevalence and clinical correlates of coronary artery disease among new dialysis patients in the United States: a cross-sectional study. J Am Soc Nephrol 12:1516–1523

    CAS  PubMed  Google Scholar 

  7. o A (1992) Comorbid conditions and correlations with mortality risk among 3,399 incident hemodialysis patients. Am J Kidney Dis 20(5 suppl 2):32–38

    Google Scholar 

  8. Koc-Zorawska E, Malyszko J, Zbroch E et al (2012) Vascular adhesion protein-1 and renalase in regard to diabetes in hemodialysis patients. Arch Med Sci 8(6):1048–1052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kielstein JT, Zoccali C (2005) Asymmetric dimethylarginine: a cardiovascular risk factor and a uremic toxin coming of age? Am J Kidney Dis 46:186–202

    Article  CAS  PubMed  Google Scholar 

  10. Lin CJ, Chuang CK, Jayakumar T et al (2013) Serum p-cresyl sulfate predicts cardiovascular disease and mortality in elderly hemodialysis patients. Arch Med Sci 9(4):662–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Valdivielso JM, Coll B, Martín-Ventura JL et al (2013) Soluble TWEAK is associated with atherosclerotic burden in patients with chronic kidney disease. J Nephrol 28:0. doi:10.5301/jn.5000245

    Google Scholar 

  12. Breit SN, Johnen H, Cook AD et al (2011) The TGF-β superfamily cytokine, MIC-1/GDF15: a pleotrophic cytokine with roles in inflammation, cancer and metabolism. Growth Factors 29(5):187–195

    Article  CAS  PubMed  Google Scholar 

  13. Wiklund FE, Bennet AM, Magnusson PK et al (2010) Macrophage inhibitory cytokine-1 (MIC-1/GDF15): a new marker of all-cause mortality. Aging Cell 9(6):1057–1064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bonaterra GA, Zügel S, Thogersen J et al (o J) Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury. J Am Heart Assoc. doi:10.1161/JAHA.112.002550

  15. Jager SC de, Bermúdez B, Bot I et al (2011) Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. J Exp Med 208(2):217–225

    Article  PubMed Central  PubMed  Google Scholar 

  16. Rohatgi A, Patel P, Das SR et al (2012) Association of growth differentiation factor-15 with coronary atherosclerosis and mortality in a young, multiethnic population: observations from the Dallas Heart Study. Clin Chem 58(1):172–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Anand IS, Kempf T, Rector TS et al (2010) Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation 122(14):1387–1395

    Article  CAS  PubMed  Google Scholar 

  18. Lankeit M, Kempf T, Dellas C et al (2008) Growth differentiation factor-15 for prognostic assessment of patients with acute pulmonary embolism. Am J Respir Crit Care Med 177(9):1018–1025

    Article  CAS  PubMed  Google Scholar 

  19. Clark BJ, Bull TM, Benson AB et al (2013) Growth differentiation factor-15 and prognosis in acute respiratory distress syndrome: a retrospective cohort study. Crit Care 17(3):R92

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lajer M, Jorsal A, Tarnow L et al (2010) Plasma growth differentiation factor-15 independently predicts all-cause and cardiovascular mortality as well as deterioration of kidney function in type 1 diabetic patients with nephropathy. Diabetes Care 33(7):1567–1572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Breit SN, Carrero JJ, Tsai VW et al (2012) Macrophage inhibitory cytokine-1 (MIC-1/GDF15) and mortality in end-stage renal disease. Nephrol Dial Transplant 27(1):70–75

    Article  CAS  PubMed  Google Scholar 

  22. Fouque D, Kalantar-Zadeh K, Kopple J et al (2008) A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int 73:391–398

    Article  CAS  PubMed  Google Scholar 

  23. Bologa RM, Levine DM, Parker TS et al (1998) Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. Am J Kidney Dis 32(1):107–114

    Article  CAS  PubMed  Google Scholar 

  24. Qureshi AR, Alvestrand A, Divino-Filho JC et al (2002) Inflammation, malnutrition, and cardiac disease as predictors of mortality in hemodialysis patients. J Am Soc Nephrol 13(Suppl 1):S28–S36

    PubMed  Google Scholar 

  25. Cooper BA, Penne EL, Bartlett LH, Pollock CA (2004) Protein malnutrition and hypoalbuminemia as predictors of vascular events and mortality in ESRD. Am J Kidney Dis 43(1):61–66

    Article  PubMed  Google Scholar 

  26. Mehrotra R, Duong U, Jiwakanon S et al (2011) Serum albumin as a predictor of mortality in peritoneal dialysis: comparisons with hemodialysis. Am J Kidney Dis 58:418–428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lind L, Wallentin L, Kempf T et al (2009) Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Eur Heart J 30:2346–2353

    Article  CAS  PubMed  Google Scholar 

  28. Daniels LB, Clopton P, Laughlin GA et al (2011) Growth-differentiation factor-15 is a robust, independent predictor of 11-year mortality risk in community-dwelling older adults: the Rancho Bernardo Study. Circulation 123:2101–2110

    Article  PubMed Central  PubMed  Google Scholar 

  29. Schlittenhardt D, Schober A, Strelau J et al (2004) Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res 318:325–333

    Article  CAS  PubMed  Google Scholar 

  30. Johnen H, Lin S, Kuffner T et al (2007) Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat Med 13:1333–1340

    Article  CAS  PubMed  Google Scholar 

  31. Macia L, Tsai VW, Nguyen AD et al (o J) Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake. Body weight and improves glucose tolerance in mice on normal & obesogenic diets. PLoS One. doi:10.1371/journal.pone.0034868

  32. Wakchoure S, Swain TM, Hentunen TA et al (2009) Expression of macrophage inhibitory cytokine-1 in prostate cancer bone metastases induces osteoclast activation and weight loss. Prostate 69(6):652–661

    Article  CAS  PubMed  Google Scholar 

  33. Eggers KM, Kempf T, Lind L et al (2012) Relations of growth-differentiation factor-15 to biomarkers reflecting vascu-lar pathologies in a population-based sample of elderly subjects. Scan J Clin Lab Invest 72:45–51

    Article  CAS  Google Scholar 

  34. Stenvinkel P, Larsson TE (2013) Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis 62(2):339–351

    Article  PubMed  Google Scholar 

  35. Rysz J, Majewska E, Stolarek RA et al (2006) Increased levels of soluble TNF-alpha receptors and cellular adhesion molecules in patients undergoing bioincompatible hemodialysis. Am J Nephrol 26(5):437–444

    Article  CAS  PubMed  Google Scholar 

  36. Bauskin AR, Brown DA, Kuffner T et al (2006) Role of macrophage inhibitory cytokine-1 in tumorigenesis and diagnosis of cancer. Cancer Res 66:4983–4986

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. H. Yilmaz, H.T. Çelik, O.M. Gurel, M.A. Bilgic, M. Namuslu, H. Bozkurt, A. Ayyildiz, O. Inan, N. Bavbek, and A. Akcay state that there are no conflicts of interest. All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, H., Çelik, H., Gurel, O. et al. Increased serum levels of GDF-15 associated with mortality and subclinical atherosclerosis in patients on maintenance hemodialysis. Herz 40 (Suppl 3), 305–312 (2015). https://doi.org/10.1007/s00059-014-4139-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-014-4139-5

Keywords

Schlüsselwörter

Navigation