Herz

, Volume 39, Issue 6, pp 685–691 | Cite as

Prozedurale Aspekte im Rahmen der primären PCI

Arterieller Zugang, Stentselektion, Thrombektomie, Behandlung der Non-culprit-Läsionen
Schwerpunkt
  • 203 Downloads

Zusammenfassung

Der akute Myokardinfarkt war in Deutschland im Jahr 2011 eine der häufigsten Todesursachen. Nach den Leitlinien der Europäischen Gesellschaft für Kardiologie kommen für die Akutversorgung die systemische Fibrinolyse und die primäre perkutane Koronarintervention (PCI) in Frage. Der primären PCI ist aufgrund der Überlegenheit der Vorzug zu geben. Aufgrund der geringeren Blutungskomplikationsrate ist der transradiale Zugang zu bevorzugen. Bei der Stentauswahl ist der medikamentös beschichtete Stent (DES) der neueren Generation denen der ersten Generation und dem „Bare-metal“-Stent (BMS) überlegen. Es konnte mittlerweile gezeigt werden, dass die Ereignisraten der DES (Mortalität, „target vessel revascularization“, frühe und späte Stentthrombose, Myokardinfarkt) signifikant niedriger sind. Für bioresorbierbare Scaffolds (BRS) liegen noch keine Langzeitergebnisse für den Einsatz im Rahmen der STEMI-Versorgung vor. Erste Ergebnisse sind jedoch vielversprechend. Es Bedarf in Bezug auf die Stentauswahl jedoch einer individuellen Abwägung, um allen Aspekten gerecht zu werden. Hinsichtlich der Thrombektomie im Rahmen der Akutversorgung liegen heterogene Daten vor. Aktuell ergibt sich hieraus die Notwendigkeit einer hinreichenden Abwägung, da die Thrombusaspiration in Studien durchaus auch mit erhöhten Ereignisraten assoziiert sein kann. Derzeit – hämodynamische Stabilität vorausgesetzt – sollte nur die sog. „culprit lesion“ mittels Stent versorgt werden. Weitere Stenosen sollten nach individueller Abwägung und ggf. nach Evaluierung der hämodynamischen Relevanz elektiv interveniert werden.

Schlüsselwörter

Myokardinfarkt Perkutane Koronarintervention STEMI Koronarstenose Stents 

Procedural aspects in primary PCI

Arterial access, stent selection, thrombectomy and treatment of non-culprit lesions

Abstract

Acute myocardial infarction was one of the most common causes of death in Germany in 2011. According to the guidelines of the European Society for Cardiology, systemic fibrinolysis and primary percutaneous coronary intervention (PCI) are the methods of choice for acute treatment. Primary PCI should be given priority due to its superiority. The transradial access should be preferred due to the lower bleeding complication rate. In the selection of stents the new generation of drug-eluting stents (DES) are superior to the first generation of bare metal stents (BMS). It has now been demonstrated that the incident rates of DES (e.g. mortality, target vessel revascularization, early and late stent thrombosis and myocardial infarction) are significantly lower. For bioresorbable scaffolds (BRS) long-term results for the use in treatment of ST-elevation myocardial infarction (STEMI) are not yet available but initial results are very promising. However, the selection of a stent needs to be done on an individual basis in order to do justice to all aspects. Data with respect to thrombectomy in acute treatment are heterogeneous. Currently, a thorough consideration of all aspects is necessary because thrombus aspiration can also be associated with an increased rate of incidents. In a state of hemodynamic stability only so-called culprit lesions should currently be treated with a stent. Elective interventions on further stenoses should be carried out after consideration of individual factors and if necessary evaluation of the hemodynamic relevance.

Keywords

Myocardial infarction Percutaneous coronary intervention ST segment elevation Coronary stenosis Stents 

Literatur

  1. 1.
    Statistisches Bundesamt (2014) Todesursachen: Sterbefälle insgesamt 2012 nach den 10 häufigsten Todesursachen der ICD-10. http://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Gesundheit/Todesursachen/Tabellen/SterbefaelleInsgesamt.html. Zugegriffen: 08. Nov. 2013Google Scholar
  2. 2.
    Widimsky P, Wijns W, Fajadet J et al (2010) Reperfusion therapy for ST elevation acute myocardial infarction in Europe: description of the current situation in 30 countries. Eur Heart J 31:943–957PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Jernberg T, Johanson P, Held C et al (2011) Association between adoption of evidence-based treatment and survival for patients with ST-elevation myocardial infarction. JAMA 305:1677–1684PubMedCrossRefGoogle Scholar
  4. 4.
    Fox KA, Steg PG, Eagle KA et al (2007) Decline in rates of death and heart failure in acute coronary syndromes, 1999–2006. JAMA 297:1892–1900PubMedCrossRefGoogle Scholar
  5. 5.
    Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC), Steg PG, James SK et al (2012) ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 33:2569–2619CrossRefGoogle Scholar
  6. 6.
    Zijlstra F, Hoorntje JC, Boer MJ de et al (1999) Long-term benefit of primary angioplasty as compared with thrombolytic therapy for acute myocardial infarction. N Engl J Med 341:1413–1419PubMedCrossRefGoogle Scholar
  7. 7.
    Widimsky P, Budesinsky T, Vorac D et al (2003) Long distance transport for primary angioplasty vs immediate thrombolysis in acute myocardial infarction. Final results of the randomized national multicentre trial – PRAGUE-2. Eur Heart J 24:94–104PubMedCrossRefGoogle Scholar
  8. 8.
    Andersen HR, Nielsen TT, Rasmussen K et al (2003) A comparison of coronary angioplasty with fibrinolytic therapy in acute myocardial infarction. N Engl J Med 349:733–742PubMedCrossRefGoogle Scholar
  9. 9.
    Zeymer U, Hambrecht R, Theres H et al (2013) Therapie des akuten ST-Streckenhebungs-Myokardinfarkts in Krankenhäusern mit und ohne Herzkatheterlabor. Dtsch Med Wochenschr 138:1935–1940PubMedCrossRefGoogle Scholar
  10. 10.
    Eikelboom JW, Mehta SR, Anand SS et al (2006) Adverse impact of bleeding on prognosis in patients with acute coronary syndromes. Circulation 114:774–782PubMedCrossRefGoogle Scholar
  11. 11.
    Manoukian SV, Feit F, Mehran R et al (2007) Impact of major bleeding on 30-day mortality and clinical outcomes in patients with acute coronary syndromes: an analysis from the ACUITY Trial. J Am Coll Cardiol 49:1362–1368PubMedCrossRefGoogle Scholar
  12. 12.
    Rao SV, O’Grady K, Pieper KS et al (2005) Impact of bleeding severity on clinical outcomes among patients with acute coronary syndromes. Am J Cardiol 96:1200–1206PubMedCrossRefGoogle Scholar
  13. 13.
    Rao SV, Cohen MG, Kandzari DE et al (2010) The transradial approach to percutaneous coronary intervention: historical perspective, current concepts, and future directions. J Am Coll Cardiol 55:2187–2195PubMedCrossRefGoogle Scholar
  14. 14.
    Jolly SS, Yusuf S, Cairns J et al (2011) Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet 377:1409–1420PubMedCrossRefGoogle Scholar
  15. 15.
    Cantor WJ, Puley G, Natarajan MK et al (2005) Radial versus femoral access for emergent percutaneous coronary intervention with adjunct glycoprotein IIb/IIIa inhibition in acute myocardial infarction – the RADIAL-AMI pilot randomized trial. Am Heart J 150:543–549PubMedCrossRefGoogle Scholar
  16. 16.
    Hamon M, Rasmussen LH, Manoukian SV et al (2009) Choice of arterial access site and outcomes in patients with acute coronary syndromes managed with an early invasive strategy: the ACUITY trial. EuroIntervention 5:115–120PubMedCrossRefGoogle Scholar
  17. 17.
    Romagnoli E, Biondi-Zoccai G, Sciahbasi A et al (2012) Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: the RIFLE-STEACS (Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome) study. J Am Coll Cardiol 60:2481–2489PubMedCrossRefGoogle Scholar
  18. 18.
    Bernat I, Horak D, Stasek J et al (2014) ST-segment elevation myocardial infarction treated by radial or femoral approach in a multicenter randomized clinical trial: the STEMI-RADIAL trial. J Am Coll Cardiol 63:964–972PubMedCrossRefGoogle Scholar
  19. 19.
    De Luca G, Suryapranata H, Stone GW et al (2008) Coronary stenting versus balloon angioplasty for acute mycardial infarcion: a meta-regression analysis of randomized trials. Int J Cardiol 126:37–44CrossRefGoogle Scholar
  20. 20.
    Stone GW, Grines C, Cox DA et al (2002) Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med 346:957–966CrossRefGoogle Scholar
  21. 21.
    Suryapranata H, De Luca G, Hof AW van’t et al (2008) Is routine stenting for acute myocardial infarction superior to balloon angioplasty? A randomised comparison in a large cohort of unselected patients. Heart 91:641–645CrossRefGoogle Scholar
  22. 22.
    Dibra A, Kastrati A, Alfonso F et al (2007) Effectiveness of drug-eluting stents in patients with bare-metal in-stent restenosis: meta-analysis of randomized trials. J Am Coll Cardiol 49:616–623PubMedCrossRefGoogle Scholar
  23. 23.
    Wenaweser P, Daemen J, Zwahlen M et al (2008) Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol 52:1134–1140PubMedCrossRefGoogle Scholar
  24. 24.
    Kukreja N, Onuma Y, Garcia-Garcia H et al (2009) The risk of stent thrombosis in patients with acute coronary syndroms treated with bare-metal and drug-eluting stents. JACC Cardiovasc Interv 2:534–541PubMedCrossRefGoogle Scholar
  25. 25.
    De Luca G, Dirksen M, Spaulding C et al (2012) Drug-eluting vs bare-metal stents in primary angioplasty: a pooled patient-level meta-analysis of randomized trials. Arch Intern Med 172:611–621CrossRefGoogle Scholar
  26. 26.
    Palmerini T, Biondi-Zoccai G, Della Riva D et al (2013) Clinical outcomes with drug-eluting and bare-metal stents in patients with ST-segment elevation myocardial infarction: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol 62:496–504PubMedCrossRefGoogle Scholar
  27. 27.
    Kocka V, Maly M, Tousek P et al (2014) Bioresorbable vascular scaffolds in acute ST-segment elevation myocardial infarction: a prospective multicentre study ‚Prague 19’. Eur Heart J 35:787–794PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Diletti R, Karanasos A, Muramatsu T et al (2014) Everolimus-eluting bioresorbable vascular scaffolds for treatment of patients presenting with ST-segment elevation myocardial infarction: BVS STEMI first study. Eur Heart J 35:777–788PubMedCrossRefGoogle Scholar
  29. 29.
    Hof AW van’t, Liem A, Suryapranata H et al (1998) Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle Myocardial Infarction Study Group. Circulation 97:2302–2306CrossRefGoogle Scholar
  30. 30.
    Opie LH (1989) Reperfusion injury and its pharmacologic modification. Circulation 80:1049–1062PubMedCrossRefGoogle Scholar
  31. 31.
    Morishima I, Sone T, Okumura K et al (2000) Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol 36:1202–1209PubMedCrossRefGoogle Scholar
  32. 32.
    Resnic FS, Wainstein M, Lee MK et al (2003) No-reflow is an independent predictor of death and myocardial infarction after percutaneous coronary intervention. Am Heart J 145:42–46PubMedCrossRefGoogle Scholar
  33. 33.
    Svilaas T, Horst IC van der, Zijlstra F (2006) Thrombus Aspiration during Percutaneous coronary intervention in Acute myocardial infarction Study (TAPAS) – study design. Am Heart J 151:597.e1–597.e7PubMedCrossRefGoogle Scholar
  34. 34.
    Vlaar PJ, Svilaas T, Horst IC van der et al (2008) Cardiac death and reinfarction after 1 year in the Thrombus Aspiration during Percutaneous coronary intervention in Acute myocardial infarction Study (TAPAS): a 1-year follow-up study. Lancet 371:1915–1920PubMedCrossRefGoogle Scholar
  35. 35.
    Burzotta F, De Vita M, Gu YL et al (2009) Clinical impact of thrombectomy in acute ST-elevation myocardial infarction: an individual patient-data pooled analysis of 11 trials. Eur Heart J 30:2193–2203PubMedCrossRefGoogle Scholar
  36. 36.
    Kikkert WJ, Claessen BE, Geloven N van et al (2013) Adjunctive thrombus aspiration versus conventional percutaneous coronary intervention in ST-elevation myocardial infarction. Catheter Cardiovasc Interv 81:922–929PubMedCrossRefGoogle Scholar
  37. 37.
    Stone GW, Maehara A, Witzenbichler B et al (2012) Intracoronary abciximab and aspiration thrombectomy in patients with large anterior myocardial infarction: the INFUSE-AMI randomized trial. JAMA 307:1817–1826PubMedCrossRefGoogle Scholar
  38. 38.
    Frobert O, Lagerqvist B, Olivecrona GK et al (2013) Thrombus aspiration during ST-segment elevation myocardial infarction. N Engl J Med 369:1587–1597PubMedCrossRefGoogle Scholar
  39. 39.
    De Luca G, Navarese EP, Suryapranata H (2013) A meta-analytic overview of thrombectomy during primary angioplasty. Int J Cardiol 166:606–612CrossRefGoogle Scholar
  40. 40.
    Lin MS, Wu LS, Cheng NJ et al (2009) Thrombus aspiration complicated by systemic embolization in patients with acute myocardial infarction. Circ J 73:1356–1358PubMedCrossRefGoogle Scholar
  41. 41.
    Toma M, Buller CE, Westerhout CM et al (2010) Non-culprit coronary artery percutaneous coronary intervention during acute ST-segment elevation myocardial infarction: insights from the APEX-AMI trial. Eur Heart J 31:1701–1707PubMedCrossRefGoogle Scholar
  42. 42.
    Peterson ED, Dai D, DeLong ER et al (2010) Contemporary mortality risk prediction for percutaneous coronary intervention: results from 588,398 procedures in the National Cardiovascular Data Registry. J Am Coll Cardiol 55:1923–1932PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Qarawani D, Nahir M, Abboud M et al (2008) Culprit only versus complete coronary revascularization during primary PCI. Int J Cardiol 123:288–292PubMedCrossRefGoogle Scholar
  44. 44.
    Chen LY, Lennon RJ, Grantham JA et al (2005) In-hospital and long-term outcomes of multivessel percutaneous coronary revascularization after acute myocardial infarction. Am J Cardiol 95:349–354PubMedCrossRefGoogle Scholar
  45. 45.
    Vlaar PJ, Mahmoud KD, Holmes DR et al (2011) Culprit vessel only versus multivessel and staged percutaneous coronary intervention for multivessel disease in patients presenting with ST-segment elevation myocardial infarction: a pairwise and network meta-analysis. J Am Coll Cardiol 58:692–703PubMedCrossRefGoogle Scholar
  46. 46.
    Schaaf RJ van der, Claessen BE, Vis MM et al (2010) Effect of multivessel coronary disease with or without concurrent chronic total occlusion on one-year mortality in patients treated with primary percutaneous coronary intervention for cardiogenic shock. Am J Cardiol 105:955–959PubMedCrossRefGoogle Scholar
  47. 47.
    Dias S, Welton NJ, Caldwell DM, Ades AE (2010) Checking consistency in mixed treatment comparison meta-analysis. Stat Med 29:932–944PubMedCrossRefGoogle Scholar
  48. 48.
    Erne P, Schoenenberger AW, Burckhardt D et al (2007) Effects of percutaneous coronary interventions in silent ischemia after myocardial infarction: the SWISSI II randomized controlled trial. JAMA 297:1985–1991PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2014

Authors and Affiliations

  1. 1.Medizinische Klinik I, Kardiologie und AngiologieUniversitätsklinikum Gießen und Marburg, Standort GießenGießenDeutschland

Personalised recommendations