Herz

, Volume 39, Issue 1, pp 119–130

Therapie von Fettstoffwechselstörungen

CME Zertifizierte Fortbildung
  • 276 Downloads

Zusammenfassung

Störungen des Lipidstoffwechsels spielen eine entscheidende Rolle bei der Entstehung atherosklerotisch bedingter Gefäßerkrankungen. Zentraler Bestandteil der Diagnostik ist die Einschätzung des individuellen kardiovaskulären Risikos durch gezielte Anamnese und Risiko-Scores. Aufgrund der überragenden prognostischen Bedeutung steht die Reduktion des LDL-Cholesterins mit Statinen weiterhin im Mittelpunkt der Therapie und stellt die wichtigste medikamentöse Intervention für die Primär- und Sekundärprävention atherosklerotischer Erkrankungen dar. Unverzichtbarer Bestandteil der Therapie vor allem für Patienten mit erhöhten Triglyzeridwerten sind Lebensstilmaßnahmen zur Reduktion begleitender Risikofaktoren, insbesondere körperliche Aktivität und Nikotinstop.

Schlüsselwörter

Lipidstoffwechsel Gefäßerkrankungen Hyperlipidämie LDL-Hypercholesterinämie Individuelles Risiko 

Treatment of lipid disorders

Abstract

Lipid disorders play an essential role in the pathogenesis of atherosclerotic diseases. An integral part of the clinical evaluation is the estimation of the individual cardiovascular risk using risk scores and patient history. Due to the long established prognostic relevance, reduction of low-density lipoproteins (LDL) using statins remains beyond doubt the central intervention both in primary and secondary prevention of atherosclerotic diseases. Indispensible components of treatment in all patients with elevated triglyceride levels are lifestyle changes contributing to a reduction of accompanying risk factors, in particular physical activity and smoking cessation.

Keywords

Lipid metabolism Vascular disease Hyperlipidemia LDL hypercholesterolemia Individual risk 

Literatur

  1. 1.
    Stamler J, Wentworth D, Neaton JD (1986) Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the multiple risk factor intervention trial (MRFIT). JAMA 256:2823–2828PubMedCrossRefGoogle Scholar
  2. 2.
    Grundy SM, Cleeman JI, Merz CN et al (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110:227–239PubMedCrossRefGoogle Scholar
  3. 3.
    Cholesterol Treatment Trialists (CTT), Mihaylova B, Emberson J et al (2012) The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380:581–590CrossRefGoogle Scholar
  4. 4.
    Rahilly-Tierney CR, Lawler EV, Scranton RE, Gaziano JM (2009) Cardiovascular benefit of magnitude of low-density lipoprotein cholesterol reduction: a comparison of subgroups by age. Circulation 120:1491–1497PubMedCrossRefGoogle Scholar
  5. 5.
    Laufs U, Weintraub WS, Packard CJ (2013) Beyond statins: what to expect from add-on lipid regulating therapy? Eur Heart J 34:2660–2665PubMedCrossRefGoogle Scholar
  6. 6.
    Ford I, Murray H, Packard CJ et al; West of Scotland Coronary Prevention Study Group (2007) Long-term follow-up of the West of Scotland Coronary Prevention Study. N Engl J Med 357:1477–1486PubMedCrossRefGoogle Scholar
  7. 7.
    AIM-HIGH Investigators, Boden WE, Probstfield JL et al (2011) Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 365:2255–2267CrossRefGoogle Scholar
  8. 8.
    The ACCORD Study Group (2010) Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 362:1563–1574CrossRefGoogle Scholar
  9. 9.
    European Association for Cardiovascular Prevention Rehabilitation, Reiner Z, Catapano AL et al (2011) ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 32:1769–1818CrossRefGoogle Scholar
  10. 10.
    Demacker PN, Toenhake-Dijkstra H, Rijke YB de et al (1996) On the presumed inaccuracy of the Friedewald formula in hypertriglyceridemic plasma: a role for imprecise analysis? Clin Chem 42:1491–1494PubMedGoogle Scholar
  11. 11.
    National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421Google Scholar
  12. 12.
    Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376:1670–1681CrossRefGoogle Scholar
  13. 13.
    Sarwar N, Danesh J, Eiriksdottir G et al (2007) Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 western prospective studies. Circulation 115:450–458PubMedCrossRefGoogle Scholar
  14. 14.
    Custodis F, Laufs U (2011) Hypertricglyceridemia: prognostic impact and treatment options. Dtsch Med Wochenschr 136:1533–1542PubMedCrossRefGoogle Scholar
  15. 15.
    Cooney MT, Dudina A, De Bacquer D et al (2009) How much does HDL cholesterol add to risk estimation? A report from the SCORE Investigators. Eur J Cardiovasc Prev Rehabil 16:304–314PubMedCrossRefGoogle Scholar
  16. 16.
    Taskinen MR, Nikkila EA, Valimaki M et al (1987) Alcohol-induced changes in serum lipoproteins and in their metabolism. Am Heart J 113:458–464PubMedCrossRefGoogle Scholar
  17. 17.
    Knopp RH, Gitter H, Truitt T et al (2003) Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur Heart J 24:729–741PubMedCrossRefGoogle Scholar
  18. 18.
    o A (1984) The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. JAMA 251:351–364CrossRefGoogle Scholar
  19. 19.
    Davidson MH (2006) Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol 98:27i–33iPubMedCrossRefGoogle Scholar
  20. 20.
    Taylor AJ, Sullenberger LE, Lee HJ et al (2004) Arterial biology for the investigation of the treatment effects of reducing cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation 110:3512–3517PubMedCrossRefGoogle Scholar
  21. 21.
    Brown BG, Zhao XQ, Chait A et al (2001) Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 345:1583–1592PubMedCrossRefGoogle Scholar
  22. 22.
    Canner PL, Berge KG, Wenger NK et al (1986) Fifteen year mortality in coronary drug project patients: long-term benefit with niacin. J Am Coll Cardiol 8:1245–1255PubMedCrossRefGoogle Scholar
  23. 23.
    HPS2-THRIVE Collaborative Group (2013) HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J 34:1279–1291Google Scholar
  24. 24.
    Gotto AM Jr, Moon JE (2013) Pharmacotherapies for lipid modification: beyond the statins. Nat Rev Cardiol 10:560–570PubMedCrossRefGoogle Scholar
  25. 25.
    Norata GD, Ballantyne CM, Catapano AL (2013) New therapeutic principles in dyslipidaemia: focus on LDL and Lp(a) lowering drugs. Eur Heart J 34:1783–1789PubMedCrossRefGoogle Scholar
  26. 26.
    Urban D, Pöss J, Böhm M, Laufs U (2013) Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol 62:1401–1408PubMedCrossRefGoogle Scholar
  27. 27.
    Arzneimittelkommission der deutschen Ärzteschaft (2012) Empfehlungen zur Therapie von Fettstoffwechselstörungen, 3. Aufl. Arzneiverordnung in der Praxis, Bd 39, Sonderheft 1 (Therapieempfehlungen)Google Scholar
  28. 28.
    Rogacev KS, Ziegelin M, Ulrich C et al (2009) Haemodialysis-induced transient CD16 + monocytopenia and cardiovascular outcome. Nephrol Dial Transplant 24:3480–3486PubMedCrossRefGoogle Scholar
  29. 29.
    Triglyceride Coronary Disease Genetics Consortium and Emerging Risk Factors Collaboration, Sarwar N, Sandhu MS et al (2010) Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet 375:1634–1639CrossRefGoogle Scholar
  30. 30.
    Carr MC, Brunzell JD (2004) Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk. J Clin Endocrinol Metab 89:2601–2607PubMedCrossRefGoogle Scholar
  31. 31.
    Nordestgaard BG, Chapman MJ, Ray K et al (2010) Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 31:2844–2853PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2014

Authors and Affiliations

  1. 1.Klinik f. Innere Medizin III, Kardiologie, Angiologie und Internistische IntensivmedizinUniversitätsklinik des SaarlandesHomburg/SaarDeutschland

Personalised recommendations