Herz

, Volume 39, Issue 5, pp 627–632 | Cite as

Noninvasive assessment of subclinical atherosclerosis in normotensive gravidae with gestational diabetes

  • A.E. Atay
  • H. Simsek
  • B. Demir
  • M.N. Sakar
  • M. Kaya
  • S. Pasa
  • S. Demir
  • D. Sit
e-Herz: Original article

Abstract

Aim

Carotid artery intima-media thickness (CIMT), hyperhomocysteinemia, microalbuminuria, and nitric oxide reflect subclinical atherosclerosis and predict the risk of future cardiovascular events. We aimed to evaluate the presence of subclinical atherosclerosis and endothelial dysfunction in normotensive patients with gestational diabetes mellitus (GDM) noninvasively.

Patients and methods

We enrolled 41 normotensive patients with GDM and 44 healthy gravidae in the study. Serum homocysteine and nitric oxide levels, urinary albumin excretion (microalbuminuria), and CIMT were evaluated along with lipid parameters and anthropometric measurements.

Results

Patients with GDM had significantly higher levels of serum homocysteine, urinary albumin excretion, and increased CIMT (p < 0.001, p=0.005, and p < 0.001, respectively). Nitric oxide levels were significantly reduced in the patient group (p < 0.001). There was a significant difference between groups in terms of low-density lipoprotein (LDL) but not of high-density lipoprotein (HDL) and triglyceride levels. A significant correlation was observed between CIMT and serum LDL, HDL, homocysteine, nitric oxide levels, and urinary albumin excretion. Microalbuminuria was significantly correlated with serum homocysteine levels (p=0.03) but not with nitric oxide.

Conclusion

Independent of elevated blood pressure, subclinical atherosclerosis and endothelial dysfunction exist in normotensive patients with GDM. Further studies with a large number of participants are required to clarify these data.

Keywords

Carotid artery intima-media thickness Gestational diabetes Homocysteine Nitric oxide Microalbuminuria 

Nichtinvasive Untersuchung subklinischer Atherosklerose bei normotensiven Schwangeren mit Gestationsdiabetes

Zusammenfassung

Ziel

Karotis-Intima-Media-Dicke, Hyperhomozysteinämie, Mikroalbuminurie und Stickoxid (NO) sind Zeichen einer subklinischen Atherosklerose und Prädiktoren des Risikos für zukünftige kardiovaskuläre Ereignisse. Ziel der vorliegenden Studie war es, subklinische Atherosklerose und endotheliale Dysfunktion bei normotensiven Patientinnen mit Gestationsdiabetes (GDM) nichtinvasiv zu untersuchen.

Patienten und Methoden

In die Studie wurden 41 normotensive Patientinnen mit GDM und 44 gesunde Schwangere aufgenommen. Serumhomozystein- und -NO-Wert, Albuminausscheidung im Urin (Mikroalbuminurie) und Karotis-Intima-Media-Dicke (CIMT) wurden neben Lipidwerten und anthropometrischen Parametern bestimmt.

Ergebnisse

Patientinnen mit GDM wiesen signifikant höhere Werte für Serumhomozystein, Albuminausscheidung im Urin und eine erhöhte CIMT auf (p < 0,001; p=0,005 bzw. p < 0,001). Die NO-Werte waren in der Patientengruppe signifikant vermindert (p < 0,001). Es bestand ein signifikanter Unterschied zwischen den Gruppen hinsichtlich LDL, nicht aber für HDL und Triglyzeride. Eine signifikante Korrelation wurde zwischen CIMT und den Werten für Serum-LDL, -HDL, -homozystein, -NO sowie Albuminausscheidung im Urin festgestellt. Eine Mikroalbuminurie war in signifikanter Weise mit den Serumhomozysteinwerten korreliert (p=0,03), nicht aber mit NO.

Fazit

Auch ohne erhöhten Blutdruck bestehen bei normotensiven Patientinnen mit GDM eine subklinische Atherosklerose und endotheliale Dysfunktion. Weitere Studien mit einer großen Teilnehmerzahl sind zur Klärung der vorliegenden Daten erforderlich.

Schlüsselwörter

Karotis-Intima-Media-Dicke Gestationsdiabetes Homozystein Stickoxid Mikroalbuminurie 

References

  1. 1.
    Tura A, Kautzky-Willer A, Di Cianni G, Yogev Y (2012) Characterization of former gestational diabetesmellitus: prognostic, therapeutic, and predictive aspects. Int J Endocrinol 109038. doi:10.1155/2012/109038 (Article ID)Google Scholar
  2. 2.
    MacNeill S, Dodds L, Hamilton DC et al (2001) Rates and risk factors for recurrence of gestational diabetes. Diabetes Care 24:659–662PubMedCrossRefGoogle Scholar
  3. 3.
    Ben-Haroush A, Yogev Y, Hod M (2004) Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabet Med 21:103–113PubMedCrossRefGoogle Scholar
  4. 4.
    Yokoyama H, Aoki T, Imahori M, Kuramitsu M (2004) Subclinical atherosclerosis is increased in type 2 diabetic patients with microalbuminuria evaluated by intima-media thickness and pulse wave velocity. Kidney Int 66:448–454PubMedCrossRefGoogle Scholar
  5. 5.
    Camuzcuoglu H, Toy H, Cakir H et al (2009) Decreased paraoxonase and arylesterase activities in the pathogenesis of future atherosclerotic heart disease in women with gestational diabetes mellitus. J Womens Health (Larchmt) 18:1435–1439CrossRefGoogle Scholar
  6. 6.
    Savvidou MD, Anderson JM, Kaihura C, Nicolaides KH (2010) Maternal arterial stiffness in pregnancies complicated by gestational and type 2 diabetes mellitus. Am J Obstet Gynecol 203:274–277PubMedCrossRefGoogle Scholar
  7. 7.
    Hermans MMH, Henry RMA, Dekker JM et al (2008) Albuminuria, but not estmated glomerular filtration rate, is associated with maladaptive arterial remodeling: the Hoorn Study. J Hypertens 26:791–797PubMedCrossRefGoogle Scholar
  8. 8.
    Cho NH, Lim S, Jang HC et al (2005) Homocysteine as a risk factor for the development of diabetes in women with a previous history of gestational diabetes mellitus. Diabetes Care 28:2750–2755PubMedCrossRefGoogle Scholar
  9. 9.
    Durga J, Verhoef P, Bots ML, Schouten E (2004) Homocysteine and carotid intima-media thickness: a critical appraisal of the evidence. Atherosclerosis 176:1–19PubMedCrossRefGoogle Scholar
  10. 10.
    Tarim E, Bagis T, Kilicdag E et al (2004) Elevated plasma homocysteine levels in gestational diabetes mellitus. Acta Obstet Gynecol Scand 83:543–547PubMedCrossRefGoogle Scholar
  11. 11.
    Seghieri G, Breschi MC, Anichini R et al (2003) Serum homocysteine levels are increased in women with gestational diabetes mellitus. Metabolism 52:720–723PubMedCrossRefGoogle Scholar
  12. 12.
    Redon J (2005) Antihypertensive treatment: should it be titrated to blood pressure reduction or to target organ damage regression? Curr Opin Nephrol Hypertens 14:448–452PubMedCrossRefGoogle Scholar
  13. 13.
    Boler L, Zbella EA, Gleicher N (1987) Quantitation of proteinuria in pregnancy by the use of single voided urine samples. Obstet Gynecol 70:99–100PubMedGoogle Scholar
  14. 14.
    Henareh L, Jogestrand T, Agewall S (2006) Microalbuminuria in patients with previous myocardial infarction. Kidney Int 69:178–183PubMedCrossRefGoogle Scholar
  15. 15.
    Derchi LE, Leoncini G, Parodi D et al (2005) Mild renal dysfunction and renal vascular resistance in primary hypertension. Am J Hypertens 18:966–971PubMedCrossRefGoogle Scholar
  16. 16.
    Toda N, Imamura T, Okamura T (2010) Alteration of nitric oxide-mediated blood flow regulation in diabetes mellitus. Pharmacol Ther 127:189–209PubMedCrossRefGoogle Scholar
  17. 17.
    Nakagawa T, Tanabe K, Croker BP et al (2011) Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat Rev Nephrol 7:36–44PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Maejimaa K, Nakanoa S, Himenoa M et al (2001) Increased basal levels of plasma nitric oxide in Type 2 diabetic subjects Relationship to microvascular complications. J Diabetes Complications 15:135–143CrossRefGoogle Scholar
  19. 19.
    Zavaroni I, Ardigo D, Zuccarelli A et al (2006) Insulin resistance/compensatory hyperinsulinemia predict carotid intimal medial thickness in patients with essential hypertension. Nutr Metab Cardiovasc Dis 16:22–27PubMedCrossRefGoogle Scholar
  20. 20.
    Vik A, Mathiesen EB, Brox J et al (2010) Relation between serum osteoprotegerin and carotid intima media thickness in a general population—the Tromsø Study. J Thromb Haemost 8:2133–2139PubMedCrossRefGoogle Scholar
  21. 21.
    Hu J (1999) Non-invasive assessment of dynamic properties in human arteries with special reference to gestation and diabetes. Eur J Obstet Gynecol Reprod Biol 85:133PubMedCrossRefGoogle Scholar
  22. 22.
    Boa S, Valpreda S, Menato G et al (2007) Should we consider gestational diabetes a vascular risk factor? Atherosclerosis 194:72–79CrossRefGoogle Scholar
  23. 23.
    Ozuguz U, Isik S, Berker D et al (2011) Gestational diabetes and subclinical inflammation: evaluation of first year postpartum outcomes. Diabetes Res Clin Pract 94:426–433PubMedCrossRefGoogle Scholar
  24. 24.
    Ishibashi T, Matsubara T, Ida T et al (2000) Negative NO3 difference in human coronary circulation with severe atherosclerotic stenosis. Life Sci 66:173–184PubMedCrossRefGoogle Scholar
  25. 25.
    Dinneen SF, Gernstein HC (1997) The association of microalbuminuria and mortality in non-insulin dependent diabetes mellitus. A systemic overview of the literature. Arch Intern Med 157:1413–1418PubMedCrossRefGoogle Scholar
  26. 26.
    Akinci B, Demir T, Celtik A et al (2008) Serum osteoprotegerin is associated with carotid intima media thickness in women with previous gestational diabetes. Diabetes Res Clin Pract 82:172–178PubMedCrossRefGoogle Scholar
  27. 27.
    Tarim E, Yigit F, Kilicdag E et al (2006) Early onset of subclinical atherosclerosis in women with gestational diabetes mellitus. Ultrasound Obstet Gynecol 27:177–182PubMedCrossRefGoogle Scholar
  28. 28.
    Emoto M, Kanda H, Shoji T et al (2001) Impact of insulin resistance and nephropathy on homocysteine in type 2 diabetes. Diabetes Care 24:533–538PubMedCrossRefGoogle Scholar
  29. 29.
    Jager A, Kostense PJ, Nijpels G et al (2001) Serum homocysteine levels are associated with the development of microalbuminuria: the Hoorn study. Arterioscler Thromb Vasc Biol 21:74–81PubMedCrossRefGoogle Scholar
  30. 30.
    Hu J, Björklund A, Nyman M, Gennser G (1998) Mechanical properties of large arteries in mother and fetus during normal and diabetic pregnancy. J Matern Fetal Investig 8:185–193PubMedGoogle Scholar
  31. 31.
    Giannattasio C, Failla M, Piperno A et al (1999) Early impairment of large artery structure and function in Type I diabetes mellitus. Diabetologia 42:987–994PubMedCrossRefGoogle Scholar
  32. 32.
    Chen X, Scholl TO (2005) Oxidative stress: changes in pregnancy and with gestational diabetes mellitus. Curr Diab Rep 5:282–288PubMedCrossRefGoogle Scholar
  33. 33.
    Kronenberg F, Kuen E, Ritz E et al (2000) Lipoprotein(a) serum concentrations and apolipoprotein(a) phenotypes in mild and moderate renal failure. J Am Soc Nephrol 11:105–115PubMedGoogle Scholar
  34. 34.
    Eddib A, Allaf MB, Ogunleye O, Rodgers B (2011) Prediction of proteinuria and microalbuminuria in diabetic pregnancies with a random single void. J Matern Fetal Neonatal Med 24:583–586PubMedCrossRefGoogle Scholar
  35. 35.
    Redon J (2005) Antihypertensive treatment: should it be titrated to blood pressure reduction or to target organ damage regression? Curr Opin Nephrol Hypertens 14:448–452PubMedCrossRefGoogle Scholar
  36. 36.
    Pontremoli R, Nicolella C, Viazzi F et al (1998) Microalbuminuria is an early marker of target organ damage in essential hypertension. Am J Hypertens 11:430–438PubMedCrossRefGoogle Scholar
  37. 37.
    Wright A, Steele P, Bennett JR et al (1987) The urinary excretion of albumin in normal pregnancy. Br J Obstet Gynaecol 94:408–412PubMedCrossRefGoogle Scholar
  38. 38.
    Misiani R, Marchesi D, Tiraboschi G et al (1991) Urinary albumin excretion in normal pregnancy and pregnancy-induced hypertension. Nephron 59:416–422PubMedCrossRefGoogle Scholar
  39. 39.
    Williams SB, Cusco JA, Roddy MA et al (1996) Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 27:567–574PubMedCrossRefGoogle Scholar
  40. 40.
    Vallance P, Collier J, Moncada S (1989) Effects of endothelium derived nitric oxide on peripheral arteriolar tone in man. Lancet 28:997–1000CrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2013

Authors and Affiliations

  • A.E. Atay
    • 1
  • H. Simsek
    • 1
  • B. Demir
    • 1
  • M.N. Sakar
    • 1
  • M. Kaya
    • 1
  • S. Pasa
    • 1
  • S. Demir
    • 1
  • D. Sit
    • 1
  1. 1.Faculty of MedicineYuzuncu Yil UniversityVanTurkey

Personalised recommendations