, Volume 39, Issue 5, pp 586–592 | Cite as

Simplified detection of myocardial ischemia by seismocardiography

Differentiation between causes of altered myocardial function
  • M. Becker
  • A.B. Roehl
  • U. Siekmann
  • A. Koch
  • M. de la Fuente
  • R. Roissant
  • K. Radermacher
  • N. Marx
  • M. Hein
Original article


Seismocardiography (SCG) is a noninvasive technique for recording cardiac vibrations. Changes in these waves have been correlated with chronic and acute alterations in myocardial function. This analysis is complex and clinical integration limited. The current study aimed to simplify the utilization of SCG by fast Fourier transformation for a reliable discrimination between different intra- and postoperative causes of hypotension (i.e., myocardial ischemia or hypovolemia). We operated on nine pigs and recorded SCG at baseline, at hypovolemia (occlusion of the inferior vena cava), and at ischemia (occlusion of the right coronary artery). In conclusion, SCG enables detection and differentiation of ischemia and hypovolemia as important causes of altered myocardial function during and after surgery. Thus, this simple and noninvasive diagnostic tool may be used intra- and postoperatively to identify patients at risk.


Seismocardiography Myocardial ischemia Fast Fourier transformation Myocardial function Detection 

Abbreviations and Acronyms


aortic valve opening


cardiac time intervals






inferior vena cava


left ventricular


right coronary artery


diastolic early rapid filling


receiver-operating characteristics




transesophageal echocardiography

Vereinfachte Erkennung myokardialer Ischämie durch Seismokardiographie

Ursachendifferenzierung veränderter Myokardfunktion


Die Seismokardiographie (SCG) ist eine nichtinvasive Technik zur Aufzeichnung kardialer Vibrationen. Änderungen dieser aufgezeichneten Wellen wurden bereits mit zahlreichen chronischen und akuten myokardialen Zuständen korreliert. Die Analyse der SCG ist allerdings komplex und die klinische Anwendbarkeit damit limitiert. Die vorliegende Studie soll helfen, die Anwendung der SCG durch eine Fourier-Transformation zu vereinfachen und eine Differenzierung zwischen verschiedenen intra- und postoperativen Ursachen einer Hypotonie (z. B. myokardiale Ischämie oder Hypovolämie) zu ermöglichen. Wir haben 9 Schweine operiert und die SCG zu den Zeitpunkten Baseline, Hypovolämie (durch Verschluss der unteren V. cava) und Ischämie (durch Verschluss der rechten Kranzarterie) aufgenommen. Zusammenfassend ermöglicht die SCG eine Identifizierung und Differenzierung von Hypovolämie und myokardialer Ischämie als wesentliche Ursachen einer eingeschränkten myokardialen Funktion während und nach einer Operation. Daher ist diese einfache und nichtinvasive Methode gut geeignet, um intra- und postoperativ Risikopatienten zu identifizieren.


Seismokardiographie Myokardiale Ischämie Schnelle Fourier-Transformation Myokardfunktion Diagnostik 


Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.


  1. 1.
    Zanetti JM, Poliac MO, Crow RS et al (1991) Seismocardiography: waveform identification and noise analysis. Comput Cardiol 18:49–52CrossRefGoogle Scholar
  2. 2.
    Bayevski RM, Egerov AD, Kasajan LA et al (1964) Seismocardiography. Kardiologiia 18:87–89Google Scholar
  3. 3.
    Salerno DM, Zanetti J (1990) Seisomocardiography: a new technique for recording cardiac vibrations: concept, method and initial observations. J Cardiovasc Technol 9:111–118Google Scholar
  4. 4.
    Salerno DM, Zanetti J (1991) Seismocardiography for monitoring changes in left ventricular function during ischemia. Chest 100:991–995PubMedCrossRefGoogle Scholar
  5. 5.
    Crow RS, Hannan P, Jacobs D et al (1994) Relationship between seismocardiogram and echocardiogram for events in the cardiac cycle. Am J Noninvasive Cardiol 8:39Google Scholar
  6. 6.
    Rickards AF, Bomdardini T, Corbucci G et al (1996) An implantable intracardiac accelerometer for monitoring myocardial contractility. Pacing Clin Electrophysiol 19:2066–2071PubMedCrossRefGoogle Scholar
  7. 7.
    Ovadia M, Gear K, Thoele D et al (1995) Accelerometer systolic time intervals as fast-response sensors of upright posture in the young. Circulation 92:1849–1859PubMedCrossRefGoogle Scholar
  8. 8.
    Korzeniowska-Kubacka I, Piotrowicz R (2002) Seismocardiography-a noninvasive technique for estimating of left ventricular function. Preliminary results. Acta Cardiol 57:51–52PubMedGoogle Scholar
  9. 9.
    Tavakolian K, Portacio G, Tamddondoust NR et al (2012) Myocardial contraactiliy: a seismocardiography approach. Conf Proc IEEE Eng Med Biol Soc 2012:3801–3804PubMedGoogle Scholar
  10. 10.
    Bongiorni MG, Soldati E, Arena G et al (1996) Is local myocardial contractility related to endocardail acceleration signals detected by transvenuous pacing lead? Pacing Clin Electrophysiol 19:1682–1688PubMedCrossRefGoogle Scholar
  11. 11.
    McKay MC, Gregson PH, McKay BW et al (1999) Sternal acceleration Ballistocardiogaphy and arterial pressure wave analysis to determine stroke volume. Clin Invest Med 22:4–14PubMedGoogle Scholar
  12. 12.
    Salerno DM, Zanetti JM, Poliac LC et al (1992) Exercise seismocardiography for detection of coronary artery disease. Am J Noninvasive Cardiol 321–330Google Scholar
  13. 13.
    Wilson RA, Bamrath VS, Lindsay J et al (1993) Diagnostic accuracy of seismocardiography compared with electrocardiography for the anatomic and physiologic diagnosis of coronary artery disease during exercise testing. Am J Cardiol 71:536–545PubMedCrossRefGoogle Scholar
  14. 14.
    Brüser C, Kerekes A, Winter S et al (2012) Multi-channel optical sensor-array for measuring ballistocardiograms and respiratory activity in bed. Conf Proc IEEE Eng Med Biol Soc 2012:5042–5045PubMedGoogle Scholar
  15. 15.
    Migeotte PF, De Ridder S, Tank J et al (2012) Three dimensional ballisto- and seismo-cardiography: HIJ wave amplitudes are poorly correlated to maximal systolic force vector. Conf Proc IEEE Eng Med Biol Soc 2012:5046–5049PubMedGoogle Scholar
  16. 16.
    Alametsä J, Palomäki A, Viik J (2011) Short and longer term repeatability of ballistocardiography in a sitting position with EMFi sensor. Med Biol Eng Comput 49(8):881–889PubMedCrossRefGoogle Scholar
  17. 17.
    Wiard RM, Inan OT, Argyres B et al (2011) Automatic detection of motion artifacts in the ballistocardiogram measured on a modified bathroom scale. Med Biol Eng Comput 49(2):213–220PubMedCrossRefGoogle Scholar
  18. 18.
    Inan OT, Etemadi M, Wiard RM et al (2009) Novel methods for estimating the ballistocardiogram signal using a simultaneously acquired electrocardiogram. Conf Proc IEEE Eng Med Biol Soc 2009:5344–5347PubMedGoogle Scholar
  19. 19.
    Jain U, Laflamme CJ, Aggarwal A et al (1997) Electrocardiographic and hemodynamic changes and their association with myocardial infarction during coronary artery bypass surgery. A multicenter study. Multicenter study of perioperative ischemia (McSPI) Research Group. Anesthesiology 86:576–591PubMedCrossRefGoogle Scholar
  20. 20.
    Cresenzi G, Bove T, Pappalardo F et al (2004) Clinical significance of a new Q wave after cardiac surgery. Eur J Cardiothorac Surg 25:1001–1005CrossRefGoogle Scholar
  21. 21.
    Sabia P, Afrookteh A, Touchstone DA et al (1991) Value of regional wall motion abnormality in the ermergenca room diagnosis of acute myocardial infarction. A prospective study suing two-dimensional echocardiography. Circulation 84:185–192CrossRefGoogle Scholar
  22. 22.
    Pennell DJ, Firmin DN, Burger P et al (1995) Assessment of magnetic resonance velocity mapping of global ventricular function during dobutamine infusion in coronary artery disease. Br Heart J 74:163–168PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Elle OJ, Halvorsen S, Gulbrandsen MG et al (2005) Early recognition of regional cardiac ischemia using a 3-axis accelerometer sensor. Physiol Meas 26:429–440PubMedCrossRefGoogle Scholar
  24. 24.
    Theres HP, Kaiser DR, Nelson SD et al (2004) Detection of acute myocardial ischemia during percutaneous transluminal coronary angioplasty by endocardial acceleration. Pacing Clin Electrophysiol 27:621–625PubMedCrossRefGoogle Scholar
  25. 25.
    Korzeniowska-Kubacka I, Bilinska M, Piotrowicz (2005) Usefulness of seismocardiography for the diagnosis of ischemia in patients with coronary artery disease. Ann Noninvasive Electrocardiol 10:281–287PubMedCrossRefGoogle Scholar
  26. 26.
    Etemadi M, Inan OT, Giovangrandi L et al (2011) Rapid assessment of cardiac contractility on a home bathroom scale. IEEE Trans Inf Technol Biomed 15:864–869PubMedCrossRefGoogle Scholar
  27. 27.
    Migliorini M, Bianchi AM, Nisticò D et al (2010) Automatic sleep staging based on ballistocardiographic signals recorded through bed sensors. Conf Proc IEEE Eng Med Biol Soc 2010:3273–3276PubMedGoogle Scholar
  28. 28.
    Ramos-Castro J, Moreno J, Miranda-Vidal H et al (2012) Heart rate variability analysis using a seismocardiogram signal. Conf Proc IEEE Eng Med Biol Soc 2012:5642–5645PubMedGoogle Scholar
  29. 29.
    Wick CA, Su JJ, McClellan JH et al (2012) A system for seismocardiography-based identification of quiescent heart phases: implications for cardiac imaging. IEEE Trans Inf Technol Biomed 16:869–877PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Castiglioni P, Faini A, Parati G et al (2007) Wearable seismocardiography. Conf Proc IEEE Eng Med Biol Soc 2007:3954–3957PubMedGoogle Scholar

Copyright information

© Urban & Vogel 2013

Authors and Affiliations

  • M. Becker
    • 1
  • A.B. Roehl
    • 2
  • U. Siekmann
    • 2
  • A. Koch
    • 3
  • M. de la Fuente
    • 4
  • R. Roissant
    • 2
  • K. Radermacher
    • 4
  • N. Marx
    • 1
  • M. Hein
    • 2
  1. 1.Department of CardiologyMedizinische Klinik I, RWTH Aachen University HospitalAachenGermany
  2. 2.Department of AnesthesiologyRWTH Aachen University HospitalAachenGermany
  3. 3.German Naval Medical InstituteKielGermany
  4. 4.Medical Engineering, Helmholtz Institute for Biomedical EngineeringAachenGermany

Personalised recommendations