Herz

, Volume 38, Issue 4, pp 350–358

Diagnostik und Therapie der chronischen Myokardischämie

Rolle der kardialen Magnetresonanztomographie
  • S. de Waha
  • I. Eitel
  • S. Desch
  • G. Fuernau
  • P. Lurz
  • G. Schuler
  • H. Thiele
Schwerpunkt

Zusammenfassung

Bei der Behandlung von Patienten mit chronischer koronarer Herzerkrankung reichen die therapeutischen Optionen von einem konservativen Regime mit optimaler medikamentöser Therapie über Revaskularisationsmaßnahmen wie der primären perkutanen Koronarintervention bis hin zur koronaren Bypass-Operation. Je nach zugrunde liegendem Patientenkollektiv können die verschiedenen Therapieansätze die Prognose und auch die Symptomatik signifikant verbessern und sind den anderen Strategien überlegen. Zur Wahl der optimalen Therapie und somit zur Prognoseverbesserung ist der Nachweis von myokardialer Ischämie sowie persistierender Vitalität von immanenter Bedeutung. Hierbei kann die kardiale Magnetresonanztomographie (MRT) einen wichtigen Beitrag leisten. Zur Ischämiediagnostik ist mittels Perfusions-Stress-MRT der Nachweis von Perfusionsdefiziten und somit hämodynamisch relevanten Koronarstenosen möglich, wohingegen durch Dobutamin-Stress-MRT der Nachweis von Kinetikstörungen unter Belastung erfolgen kann. Beide Verfahren sind anderen bildgebenden Techniken wie der Single-Photonenemissions-Computertomographie oder der Stressechokardiographie teilweise überlegen. Zur Vitalitätsdiagnostik kann einerseits mittels MRT die enddiastolische Wanddicke wie auch das Ausmaß der Transmuralität einer Narbe durch Delayed-Enhancement-Imaging beurteilt werden. Des Weiteren kann mittels Low-dose-Dobutamin-Stress-MRT auch die kontraktile Reserve visualisiert werden. Da das Delayed-Enhancement-Imaging aufgrund der hohen zeitlichen und räumlichen Auflösung eine hohe Sensitivität und Spezifität erzielt und in Ruhe ohne medikamentösen Stress schnell durchführbar sowie leicht auswertbar ist, kann diese Technik nach derzeitiger Datenlage als bevorzugte Methode zur Vitalitätsdiagnostik empfohlen werden. In diesem Beitrag werden die verschieden MRT-Techniken zur Ischämie- und Vitalitätsdiagnostik vorgestellt und deren Rolle zur Diagnose und Therapie der chronischen Myokardischämie diskutiert.

Schlüsselwörter

Koronare Herzerkrankung Therapie Magetresonanzomographie Ischämiediagnostik Vitalitätsdiagnostik 

Diagnosis and therapy of chronic myocardial ischemia

Role of cardiac magnetic resonance imaging

Abstract

In patients with chronic coronary artery disease different therapeutic strategies, such as optimal medical therapy, revascularization by percutaneous coronary intervention or coronary artery bypass grafting have been shown to improve the prognosis and symptoms and yield proven superiority over other treatment strategies in different patient populations. Thus, individual assessment of cardiac function and structure is of paramount importance to choose the optimal therapeutic strategy and subsequently improve patient prognosis. In this setting cardiac magnetic resonance imaging (CMR) has been shown to provide important diagnostic information. Myocardial ischemia can be detected by either perfusion stress CMR demonstrating perfusion deficits indicative of hemodynamically relevant coronary artery stenosis or dobutamin stress CMR for objectifying wall motion abnormalities during stress. Both techniques are superior to single photon emission computerized tomography and stress echocardiography in specific patient populations. Myocardial viability can be assessed by means of end-diastolic wall thickness or delayed enhancement imaging which allows quantification of the transmural extent of scarring. Furthermore, low-dose dobutamin stress CMR can detect a contractile reserve. Delayed enhancement imaging leads to accurate results due to its high resolution, can be performed at rest requiring no stress within a short time period and is easy to analyze. Thus this technique can be recommended as the favored technique to assess myocardial viability. In the following article the CMR techniques for ischemia and viability testing will be presented and their role in diagnosis and therapy of chronic myocardial ischemia will be discussed.

Keywords

Coronary artery disease Therapy Magnetic resonance imaging Ischemia testing Viability testing 

Literatur

  1. 1.
    Lloyd-Jones D, Adams R, Carnethon M et al (2009) Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119:480–486PubMedCrossRefGoogle Scholar
  2. 2.
    Fox K, Garcia MA, Ardissino D et al (2006) Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 27:1341–1381PubMedCrossRefGoogle Scholar
  3. 3.
    Hachamovitch R, Hayes SW, Friedman JD et al (2003) Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 107:2900–2907PubMedCrossRefGoogle Scholar
  4. 4.
    Hachamovitch R, Rozanski A, Shaw LJ et al (2011) Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J 32:1012–1024PubMedCrossRefGoogle Scholar
  5. 5.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492PubMedGoogle Scholar
  6. 6.
    Cerqueira MD, Nguyen P, Staehr P et al (2008) Effects of age, gender, obesity, and diabetes on the efficacy and safety of the selective A2A agonist regadenoson versus adenosine in myocardial perfusion imaging: integrated ADVANCE-MPI trial results. JACC Cardiovasc Imaging 1:307–316PubMedCrossRefGoogle Scholar
  7. 7.
    Iskandrian AE, Bateman TM, Belardinelli L et al (2007) Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol 14:645–658PubMedCrossRefGoogle Scholar
  8. 8.
    Thiele H, Dorr R, Gutberlet M (2012) Diagnostic work-up of coronary artery disease: clinical value of different imaging methods. Herz 37:887–899PubMedCrossRefGoogle Scholar
  9. 9.
    Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained devolution. Med Phys 25:73–84PubMedCrossRefGoogle Scholar
  10. 10.
    Nagel E, Klein C, Paetsch I et al (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437PubMedCrossRefGoogle Scholar
  11. 11.
    Klem I, Heitner JF, Shah DJ et al (2006) Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 47:1630–1638PubMedCrossRefGoogle Scholar
  12. 12.
    Nandalur KR, Dwamena BA, Choudhri AF et al (2007) Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease. J Am Coll Cardiol 50:1343–1353PubMedCrossRefGoogle Scholar
  13. 13.
    Jaarsma C, Leiner T, Bekkers SC et al (2012) Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol 59:1719–1728PubMedCrossRefGoogle Scholar
  14. 14.
    Schwitter J, Wacker CM, Rossum AC van et al (2008) MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29:480–489PubMedCrossRefGoogle Scholar
  15. 15.
    Schwitter J, Wacker CM, Wilke N et al (2013) MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J 34:775–781PubMedCrossRefGoogle Scholar
  16. 16.
    Greenwood JP, Maredia N, Younger JF et al (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379:453–460PubMedCrossRefGoogle Scholar
  17. 17.
    Jogiya R, Kozerke S, Morton G et al (2012) Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease. J Am Coll Cardiol 60:756–765PubMedCrossRefGoogle Scholar
  18. 18.
    Lockie T, Ishida M, Perera D et al (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57:70–75PubMedCrossRefGoogle Scholar
  19. 19.
    Manka R, Paetsch I, Kozerke S et al (2012) Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location. Eur Heart J 33:2016–2024PubMedCrossRefGoogle Scholar
  20. 20.
    Motwani M, Maredia N, Fairbairn TA et al (2012) High-resolution versus standard-resolution cardiovascular MR myocardial perfusion imaging for the detection of coronary artery disease. Circ Cardiovasc Imaging 5:306–313PubMedCrossRefGoogle Scholar
  21. 21.
    Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS); European Association for Percutaneous Cardiovascular Interventions (EAPCI); Wijns W, Kolh P, Danchin N et al (2010) Guidelines on myocardial revascularization. Eur Heart J 31:2501–2555CrossRefGoogle Scholar
  22. 22.
    Jahnke C, Nagel E, Gebker R et al (2007) Prognostic value of cardiac magnetic resonance stress tests. Adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 115:1769–1776PubMedCrossRefGoogle Scholar
  23. 23.
    Achenbach S, Barkhausen J, Beer M et al (2012) Consensus recommendations of the German Radiology Society (DRG), the German Cardiac Society (DGK) and the German Society for Pediatric Cardiology (DGPK) on the use of cardiac imaging with computed tomography and magnetic resonance imaging. Rofo 184:345–368PubMedCrossRefGoogle Scholar
  24. 24.
    Strach K, Meyer C, Schild H, Sommer T (2006) Cardiac stress MR imaging with dobutamine. Eur Radiol 16:2728–2738PubMedCrossRefGoogle Scholar
  25. 25.
    Wahl A, Paetsch I, Gollesch A et al (2004) Safety and feasibility of high-dose dobutamine-atropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases. Eur Heart J 25:1230–1236PubMedCrossRefGoogle Scholar
  26. 26.
    Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542PubMedCrossRefGoogle Scholar
  27. 27.
    Fletcher GF, Balady GJ, Amsterdam EA et al (2001) Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation 104:1694–1740PubMedCrossRefGoogle Scholar
  28. 28.
    Paetsch I, Jahnke C, Wahl A et al (2004) Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 110:835–842PubMedCrossRefGoogle Scholar
  29. 29.
    Nagel E, Lehmkuhl HB, Bocksch W et al (1999) Non-invasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–770PubMedCrossRefGoogle Scholar
  30. 30.
    Korosoglou G, Elhmidi Y, Steen H et al (2010) Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1,493 consecutive patients: assessment of myocardial wall motion and perfusion. J Am Coll Cardiol 56:1225–1234PubMedCrossRefGoogle Scholar
  31. 31.
    Bonow RO, Maurer G, Lee KL et al (2011) Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 364:1617–1625PubMedCrossRefGoogle Scholar
  32. 32.
    Allman KC, Shaw LJ, Hachamovitch R, Udelson JE (2002) Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 39:1151–1158PubMedCrossRefGoogle Scholar
  33. 33.
    Camici PG, Prasad SK, Rimoldi OE (2008) Stunning, hibernation, and assessment of myocardial viability. Circulation 117:103–114PubMedCrossRefGoogle Scholar
  34. 34.
    Baer FM, Theissen P, Schneider CA et al (1998) Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 31:1040–1048PubMedCrossRefGoogle Scholar
  35. 35.
    Baer FM, Voth E, Schneider CA et al (1995) Comparison of low-dose dobutamin-gradient-echo magnetic resonance imaging and positron emission tomography with [18F] Fluorodeoxyglucose in patients with chronic coronary artery disease. Circulation 91:1006–1015PubMedCrossRefGoogle Scholar
  36. 36.
    Swaminathan S, Horn TD, Pellowski D et al (2007) Nephrogenic systemic fibrosis, gadolinium, and iron mobilization. N Engl J Med 357:720–722PubMedCrossRefGoogle Scholar
  37. 37.
    Li A, Wong CS, Wong MK et al (2006) Acute adverse reactions to magnetic resonance contrast media–gadolinium chelates. Br J Radiol 79:368–371PubMedCrossRefGoogle Scholar
  38. 38.
    Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453PubMedCrossRefGoogle Scholar
  39. 39.
    Gutberlet M, Frohlich M, Mehl S et al (2005) Myocardial viability assessment in patients with highly impaired left ventricular function: comparison of delayed enhancement, dobutamine stress MRI, end-diastolic wall thickness, and TI201-SPECT with functional recovery after revascularization. Eur Radiol 15:872–880PubMedCrossRefGoogle Scholar
  40. 40.
    Abdel-Aty H, Zagrosek A, Schulz-Menger J et al (2004) Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109:2411–2416PubMedCrossRefGoogle Scholar
  41. 41.
    Kaandorp TA, Bax JJ, Schuijf JD et al (2004) Head-to-head comparison between contrast-enhanced magnetic resonance imaging and dobutamine magnetic resonance imaging in men with ischemic cardiomyopathy. Am J Cardiol 93:1461–1464PubMedCrossRefGoogle Scholar
  42. 42.
    Wellnhofer E, Olariu A, Klein C et al (2004) Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 109:2172–2174PubMedCrossRefGoogle Scholar
  43. 43.
    Arai AE (2011) The cardiac magnetic resonance (CMR) approach to assessing myocardial viability. J Nucl Cardiol 18:1095–1102PubMedCrossRefGoogle Scholar
  44. 44.
    Baer FM, Theissen P, Crnac J et al (2000) Head to head comparison of dobutamine-transoesophageal echocardiography and dobutamine-magnetic resonance imaging for the prediction of left ventricular functional recovery in patients with chronic coronary artery disease. Eur Heart J 21:981–991PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2013

Authors and Affiliations

  • S. de Waha
    • 1
  • I. Eitel
    • 1
  • S. Desch
    • 1
  • G. Fuernau
    • 1
  • P. Lurz
    • 1
  • G. Schuler
    • 1
  • H. Thiele
    • 1
  1. 1.Klinik für Innere Medizin/Kardiologie, Herzzentrum LeipzigUniversität LeipzigLeipzigDeutschland

Personalised recommendations