Herz

, Volume 38, Issue 4, pp 367–375 | Cite as

Hybridbildgebung in Diagnostik und Therapie der chronischen Myokardischämie

Klinischer Stellenwert
Schwerpunkt
  • 223 Downloads

Zusammenfassung

In klinischen Untersuchungen konnte übereinstimmend gezeigt werden, dass es nur eine sehr schwache Korrelation zwischen dem angiographisch bestimmten Schweregrad einer koronaren Herzerkrankung (KHK) und der Störung der regionalen Koronarperfusion gibt. Die Ergebnisse randomisierter Studien mit einer FFR („fractional flow reserve“)-gesteuerten koronaren Intervention (DEFER, FAME I, FAME II) konnten andererseits zeigen, dass nicht der angiographisch bestimmte morphologische Schweregrad einer KHK, sondern der mittels FFR bestimmte funktionelle Schweregrad prognostisch und für die Indikation zur Revaskularisation entscheidend ist. Ein nichtinvasives Verfahren, welches eine gleichzeitige anatomische Darstellung der Koronararterien mit einer funktionellen Ischämiediagnostik kombiniert, ist somit besonders wünschenswert. Aus diesem Grund war die Kombination einer Koronarcomputertomographieangiographie (CCTA) mit einem funktionellen Verfahren wie der Perfusions-PET (Positronenemissionstomographie), der Perfusions-SPECT („single photon emission computed tomography“) oder auch der Perfusions-MRT (Magnetresonztomograhie) naheliegend. Dies kann in Form einer Software-gestützten Fusion von Bilddatensets, gewonnen mit unterschiedlichen Geräten („fusion imaging“), oder in einem Kombinationsgerät („hybrid imaging“), einem PET-CT oder einem SPECT-CT erfolgen. Erste Ergebnisse von Studien mit der PET-CCTA und SPECT-CCTA, die als kardiale Hybridbildgebung an einem 64-Zeilen-CT durchgeführt wurden, zeigen, dass dadurch vor allem die Zahl der falsch-positiven Befunde verringert und damit die Spezifität von CCTA und SPECT jeweils signifikant erhöht werden kann. Aufgrund der bisher hohen Kosten, der geringen Verfügbarkeit und der zusätzlichen Strahlenexposition ist die Datenlage trotz der vielversprechenden Ergebnisse bisher nicht ausreichend, um aktuell eindeutige Empfehlungen für den Einsatz der Hybridbildgebung bei Patienten mit niedrigem bis intermediärem Risiko für das Vorliegen einer KHK abgeben zu können. Laufende prospektive Studien wie die SPARC- oder die EVINCI-Studie werden hier weitere Klärung bringen.

Schlüsselwörter

Koronare Herzerkrankung Koronarperfusion “Single-photon emission-computed tomography” (SPECT) Koronarcomputertomographieangiographie (CCTA) 

Hybrid imaging in diagnostics and therapy of chronic myocardial ischemia

Clinical value

Abstract

Clinical studies have consistently shown that there is only a very weak correlation between the angiographically determined severity of coronary artery disease (CAD) and disturbance of regional coronary perfusion. On the other hand, the results of randomized trials with a fractional flow reserve (FFR)-guided coronary intervention (DEFER, FAME I, FAME II) showed that it is not the angiographically determined morphological severity of coronary artery disease but the functional severity determined by FFR that is critical for prognosis and the indications for revascularization. A non-invasive method combining the morphological image of the coronary anatomy with functional imaging of myocardial ischemia is therefore particularly desirable. An obvious solution is the combination of coronary computed tomography angiography (CCTA) with a functional procedure, such as perfusion positron emission tomography (PET), perfusion single photon emission computed tomography (SPECT) or perfusion magnetic resonance imaging (MRI). This can be performed with fusion imaging or with hybrid imaging using PET-CT or SPECT-CT. First trial results with PET CCTA and SPECT CCTA carried out as cardiac hybrid imaging on a 64 slice CT showed a major effect to be a decrease in the number of false positive results, significantly increasing the specificity of CCTA and SPECT. Although the results are promising, due to the previously high costs, low availability and the additional radiation exposure, current data is not yet sufficient to give clear recommendations for the use of hybrid imaging in patients with a low to intermediate risk of CAD. Ongoing prospective studies such as the SPARC or EVINCI trials will bring further clarification here.

Keywords

Coronary artery disease Coronary perfusion Single photon emission computed tomography (SPECT) Coronary computed tomography angiography (CCTA) 

Literatur

  1. 1.
    Schober O, Heindel W (2007) PET-CT. Thieme, StuttgartGoogle Scholar
  2. 2.
    Dibble EH, Karantanis D, Mercier G et al (2012) PET/CT of cancer patients: part 1, pancreatic neoplasms. Am J Roentgenol 199:952–967CrossRefGoogle Scholar
  3. 3.
    Gaemperli O, Kaufmann PA (2008) Hybrid cardiac imaging: more than the sum of its parts? J Nucl Cardiol 15:123–126PubMedCrossRefGoogle Scholar
  4. 4.
    Husmann L, Valenta I, Weber K et al (2008) Cardiac fusion imaging with low-dose computed tomography using prospective electrocardiogram gating. Clin Nucl Med 33:490–491PubMedCrossRefGoogle Scholar
  5. 5.
    Kaufmann PA (2009) Cardiac hybrid imaging: state-of-the-art. Ann Nucl Med 23:325–331PubMedCrossRefGoogle Scholar
  6. 6.
    Kaufmann PA, Di Carli MF (2009) Hybrid SPECT/CT and PET/CT imaging: the next step in noninvasive cardiac imaging. Semin Nucl Med 39:341–347PubMedCrossRefGoogle Scholar
  7. 7.
    Herzog BA, Husmann L, Buechel RR et al (2011) Rapid cardiac hybrid imaging with minimized radiation dose for accurate non-invasive assessment of ischemic coronary artery disease. Int J Cardiol 153:10–13PubMedCrossRefGoogle Scholar
  8. 8.
    Gaemperli O, Bengel FM, Kaufmann PA (2011) Cardiac hybrid imaging. Eur Heart J 32:2100–2108PubMedCrossRefGoogle Scholar
  9. 9.
    Gaemperli O, Kaufmann PA (2011) Cardiac hybrid imaging. Clin Res Cardiol Suppl 6:32–42PubMedCrossRefGoogle Scholar
  10. 10.
    Gaemperli O, Saraste A, Knuuti J (2012) Cardiac hybrid imaging. Eur Heart J Cardiovasc Imaging 13:51–60PubMedCrossRefGoogle Scholar
  11. 11.
    Saraste A, Knuuti J (2012) Cardiac PET, CT, and MR: what are the advantages of hybrid imaging? Curr Cardiol Rep 14:24–31PubMedCrossRefGoogle Scholar
  12. 12.
    Ghadri JR, Fuchs TA, Templin C et al (2012) Cardiac hybrid imaging guides revascularization prior to non-cardiac surgery. Int J Cardiol 163(3):e44–e46PubMedCrossRefGoogle Scholar
  13. 13.
    Knuuti J, Kaufmann PA (2010) Hybrid imaging: PET-CT and SPECT-CT. In: Zamorano JL, Bax J, Rademakers F, Knuuti J (Hrsg) The ESC Textbook of Cardiovascular Imaging. Springer, Berlin Heidelberg New York, S 89–99Google Scholar
  14. 14.
    Flotats A, Knuuti J, Gutberlet M et al; Cardiovascular committee of the EANM, the ESCR and the ECNC (2011) Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging 38:201–212PubMedCrossRefGoogle Scholar
  15. 15.
    Shaw LJ, Iskandrian AE (2004) Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 11:171–185PubMedCrossRefGoogle Scholar
  16. 16.
    Underwood SR, Anagnostopoulos C, Cerqueira M et al; British Cardiac Society, British Nuclear Cardiology Society, British Nuclear Medicine Society, Royal College of Physicians of London, Royal College of Radiologists (2004) Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging 31:261–291PubMedCrossRefGoogle Scholar
  17. 17.
    Metz LD, Beattie M, Hom R et al (2007) The prognostic value of normal exercise myocardial perfusion imaging and exercise echocardiography: a meta-analysis. J Am Coll Cardiol 49:227–237PubMedCrossRefGoogle Scholar
  18. 18.
    Schäfers M, Bengel F, Büll U et al (2009) Position paper nuclear cardiology: update 2008. Nuklearmedizin 48:71–78PubMedGoogle Scholar
  19. 19.
    Wang G, Zhang J, Gao H et al (2012) Towards omni-tomography – grand fusion of multiple modalities for simultaneous interior tomography. PLoS One 7(6):e39700PubMedCrossRefGoogle Scholar
  20. 20.
    Fiechter M, Ghadri JR, Kuest SM et al (2011) Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography. Eur J Nucl Med Mol Imaging 38:2025–2030PubMedCrossRefGoogle Scholar
  21. 21.
    Gaemperli O, Schepis T, Kalff V et al (2007) Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging 34:1097–1106PubMedCrossRefGoogle Scholar
  22. 22.
    Gaemperli O, Schepis T, Valenta I et al (2007) Cardiac image fusion from stand-alone SPECT and CT: clinical experience. J Nucl Med 48:696–703PubMedCrossRefGoogle Scholar
  23. 23.
    White CW, Wright CB, Doty DB et al (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824PubMedCrossRefGoogle Scholar
  24. 24.
    Uren NG, Melin JA, De Bruyne B et al (1994) Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 330:1782–1788PubMedCrossRefGoogle Scholar
  25. 25.
    Meijboom WB, Van Mieghem CA, Pelt N van et al (2008) Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52:636–643PubMedCrossRefGoogle Scholar
  26. 26.
    Pijls NH, Schaardenburgh P van, Manoharan G et al (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 49:2105–2111PubMedCrossRefGoogle Scholar
  27. 27.
    Tonino PA, De Bruyne B, Pijls NH et al; FAME Study Investigators (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224PubMedCrossRefGoogle Scholar
  28. 28.
    De Bruyne B, Pijls NH, Kalesan B et al; FAME 2 Trial Investigators (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367:991–1001CrossRefGoogle Scholar
  29. 29.
    Gaemperli O, Schepis T, Valenta I et al (2007) Cardiac image fusion from stand-alone SPECT and CT: clinical experience. J Nucl Med 48:696–703PubMedCrossRefGoogle Scholar
  30. 30.
    Santana CA, Garcia EV, Faber TL et al (2009) Diagnostic performance of fusion of myocardial perfusion imaging (MPI) and computed tomography coronary angiography. J Nucl Cardiol 16:201–211PubMedCrossRefGoogle Scholar
  31. 31.
    Slomka PJ, Cheng VY, Dey D et al (2009) Quantitative analysis of myocardial perfusion SPECT anatomically guided by coregistered 64-slice coronary CT angiography. J Nucl Med 50:1621–1630PubMedCrossRefGoogle Scholar
  32. 32.
    Javadi MS, Lautamaki R, Merrill J et al (2010) Definition of vascular territories on myocardial perfusion images by integration with true coronary anatomy: a hybrid PET/CT analysis. J Nucl Med 51:198–203PubMedCrossRefGoogle Scholar
  33. 33.
    Ghadri JR, Fiechter M, Templin C et al (2011) Cardiac hybrid imaging in a patient with a single coronary artery originating from the right sinus of Valsalva. Eur Heart J 32:2757PubMedCrossRefGoogle Scholar
  34. 34.
    Uebleis C, Groebner M, Ziegler F von et al (2012) Combined anatomical and functional imaging using coronary CT angiography and myocardial perfusion SPECT in symptomatic adults with abnormal origin of a coronary artery. Int J Cardiovasc Imaging 28:1763–1774PubMedCrossRefGoogle Scholar
  35. 35.
    Namdar M, Hany TF, Koepfli P et al (2005) Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med 46:930–935PubMedGoogle Scholar
  36. 36.
    Rispler S, Keidar Z, Ghersin E et al (2007) Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol 49:1059–1067PubMedCrossRefGoogle Scholar
  37. 37.
    Groves AM, Speechly-Dick ME, Kayani I et al (2009) First experience of combined cardiac PET/64-detector CT angiography with invasive angiographic validation. Eur J Nucl Med Mol Imaging 36:2027–2033PubMedCrossRefGoogle Scholar
  38. 38.
    Sato A, Nozato T, Hikita H et al (2010) Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease. J Nucl Cardiol 17:19–26PubMedCrossRefGoogle Scholar
  39. 39.
    Kajander S, Joutsiniemi E, Saraste M et al (2010) Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 122:603–613PubMedCrossRefGoogle Scholar
  40. 40.
    Pazhenkottil AP, Nkoulou RN, Ghadri JR et al (2011) Prognostic value of cardiac hybrid imaging integrating single-photon emission computed tomography with coronary computed tomography angiography. Eur Heart J 32:1465–1471PubMedCrossRefGoogle Scholar
  41. 41.
    Pazhenkottil AP, Nkoulou RN, Ghadri JR et al (2011) Impact of cardiac hybrid single-photon emission computed tomography/computed tomography imaging on choice of treatment strategy in coronary artery disease. Eur Heart J 32:2824–2829PubMedCrossRefGoogle Scholar
  42. 42.
    Strahlenschutzverordnung (StrlSchV) vom 20. Juli 2001 (BGBl. I S. 1714; 2002 I S. 1459), die zuletzt durch Artikel 5 Absatz 7 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212) geändert worden istGoogle Scholar
  43. 43.
    Röntgenverordnung (RöV) in der Fassung der Bekanntmachung vom 30. April 2003 (BGBl. I S. 604), die zuletzt durch Artikel 2 der Verordnung vom 4. Oktober 2011 (BGBl. I S. 2000) geändert worden istGoogle Scholar
  44. 44.
    Buechel RR, Herzog BA, Husmann L et al (2010) Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation. Eur J Nucl Med Mol Imaging 37:773–778PubMedCrossRefGoogle Scholar
  45. 45.
    Einstein AJ, Moser KW, Thompson RC et al (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116:1290–1305PubMedCrossRefGoogle Scholar
  46. 46.
    Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197PubMedCrossRefGoogle Scholar
  47. 47.
    Hausleiter J, Martinoff S, Hadamitzky M et al (2010) Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the PROTECTION II Trial. JACC Cardiovasc Imaging 3:1113–1123PubMedCrossRefGoogle Scholar
  48. 48.
    Schäfers KP, Steggers L (2008) Combined imaging of molecular function and morphology with PET/CT and SPECT/CT: image fusion and motion correction. Basic Res Cardiol 103:191–199PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2013

Authors and Affiliations

  • R. Dörr
    • 1
  • C.T. Kadalie
    • 1
  • W.G. Franke
    • 1
  • M. Gutberlet
    • 2
  1. 1.Praxisklinik Herz und Gefäße,AkademischeLehrpraxisklinik der TU DresdenDresdenDeutschland
  2. 2.Abteilung für Diagnostische und Interventionelle RadiologieHerzzentrum LeipzigLeipzigDeutschland

Personalised recommendations