Herz

, Volume 37, Issue 8, pp 843–848 | Cite as

Antibodies to cardiac receptors

  • V. Boivin-Jahns
  • A. Schlipp
  • S. Hartmann
  • P. Panjwani
  • K. Klingel
  • M.J. Lohse
  • G. Ertl
  • R. Jahns
Main topic

Abstract

Inflammation of cardiac tissue is generally associated with an activation of the host’s immune system. On the one hand, this activation is mandatory to protect the heart by fighting the invading microbial agents or toxins and by engaging myocardial reparation and healing processes. On the other hand, uncontrolled activation of the immune defense has the risk of an arousal of auto- or cross-reactive immune cells, which in some cases bring more harm than good. Dependent on the individual genetic predisposition, such heart-directed autoimmune reactions most likely occur as a result of myocyte apoptosis or necrosis and subsequent liberation of self-antigens previously hidden to the immune system. During the past two decades, evidence for a pathogenic relevance of autoimmunity in human heart disease has substantially increased. Conformational cardiac (auto)antibodies affecting cardiac function and, in particular, (auto)antibodies that target G protein-coupled cardiac membrane receptors are thought to play a key role in the development of heart failure. Clinical pilot studies even suggest that such antibodies negatively affect survival in heart failure patients. However, the true prevalence and clinical impact of many cardiac (auto)antibodies in human heart diseases are still unclear, as are the events triggering their formation, their titer course, and their patterns of clearance and/or persistence. The present article summarizes current knowledge in the field of cardiac receptor (auto)antibodies including recent efforts to address some of the aforementioned gaps of knowledge, thereby attempting to pave the way for novel, more specific therapeutic approaches.

Keywords

Antibodies Autoantibodies Beta-adrenergic receptor Cardiac receptors Dilated cardiomyopathy (DCM) Inflammation 

Antikörper gegen kardiale Rezeptoren

Zusammenfasung

Entzündungsreaktionen im Herzmuskelgewebe sind regelhaft mit einer Aktivierung des Immunsystems verbunden. Diese ist einerseits notwendig, um das Herz selbst vor mikrobiellen Erregern und/oder Toxinen zu schützen und zugleich auch myokardiale Reparatur- und Heilungsprozesse einzuleiten. Andererseits birgt eine überschießende Aktivierung des Immunsystems grundsätzlich das Risiko einer Entstehung von selbst- oder kreuzreaktiven Immunzellen, die unter bestimmten Umständen mehr Schaden als Nutzen anrichten können. Abhängig von der individuellen genetischen Prädisposition entstehen gegen das eigene Herz gerichtete Immunreaktionen vermutlich infolge einer Apoptose oder Nekrose von Myozyten, bei der es zur Freisetzung von dem Immunsystem zuvor nicht bekannten oder zugängigen sog. „Selbstantigenen“ kommt. In den letzten 20 Jahren hat die Evidenz für eine pathogenetische Relevanz solcher, gegen das eigene Herz gerichteten Immunreaktionen bei bestimmten Herzerkrankungen stark zugenommen. Konformationellen (d. h. konformationserkennenden) Autoantikörpern – vor allem solchen, die die Herzfunktion durch Bindung an kardiale G-Protein-gekoppelte Rezeptoren beeinflussen – könnte demnach eine Schlüsselrolle bei der Entstehung der Herzinsuffizienz zukommen. Klinische Pilotstudien deuten sogar darauf hin, dass funktionell aktivierende Rezeptorantikörper die Prognose herzinsuffizienter Patienten deutlich verschlechtern. Dennoch sind die tatsächliche Prävalenz und klinische Relevanz vieler Rezeptorautoantikörper noch immer unklar, ebenso die kardialen Ereignisse, welche die Ausbildung von Rezeptorantikörpern triggern, der Titerverlauf und die Bedingungen, unter denen solche Antikörper persistieren oder spontan verschwinden. Der folgende Beitrag gibt eine kurze Übersicht über den Stand der Wissenschaft auf dem Gebiet der kardialen Rezeptorantikörper und die gegenwärtigen Bemühungen, einen Teil der noch offenen Fragen wissenschaftlich systematisch anzugehen, um damit letztlich den Weg für neue antikörperspezifische Therapieansätze zu ebnen.

Schlüsselwörter

Antikörper Autoantikörper Beta-adrenerger Rezeptor Kardiale Rezeptoren Dilatative Kardiomyopathie (DCM) Inflammation 

Notes

Acknowledgments

The authors of this article receive public funding from the German Ministry for Education and Research (Bundesministerium für Bildung und Forschung, ETiCS-study, BMBF project number 01ES0816). The ETiCS study has been acknowledged by the German Competence Network Heart Failure (CNHF, Subproject 6b), and has equally been associated to the BMBF-funded Comprehensive Heart Failure Centre, University Hospital of Würzburg (CHFC, Subproject C4). All authors had full access to the data and have read and approved the final article.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

References

  1. 1.
    Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:e2–e220PubMedCrossRefGoogle Scholar
  2. 2.
    Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee. Circulation 113:1807–1816PubMedCrossRefGoogle Scholar
  3. 3.
    Kühl U, Noutsias M, Seeberg B et al (1996) Immunohistological evidence for a chronic intramyocardial inflammatory process in dilated cardiomyopathy. Heart 75:295–300PubMedCrossRefGoogle Scholar
  4. 4.
    Luppi P, Rudert WA, Zanone MM et al (1998) Idiopathic dilated cardiomyopathy. A superantigen-driven autoimmune disease. Circulation 98:777–785PubMedCrossRefGoogle Scholar
  5. 5.
    Eriksson U, Ricci R, Hunziker L et al (2003) Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 9:1484–1490PubMedCrossRefGoogle Scholar
  6. 6.
    Caforio AL, Goldman JH, Baig MK et al (1995) Organ-specific cardiac autoantibodies in dilated cardiomyopathy—an update. Eur Heart J 16(Suppl O):68–70PubMedCrossRefGoogle Scholar
  7. 7.
    Limas CJ (1997) Cardiac autoantibodies in dilated cardiomyopathy. Circulation 95:1979–1980PubMedCrossRefGoogle Scholar
  8. 8.
    Jahns R, Boivin V, Lohse MJ (2006) Beta1-adrenergic receptor function, autoimmunity, and pathogenesis of dilated cardiomyopathy. Trends Cardiovasc Med 16:20–24PubMedCrossRefGoogle Scholar
  9. 9.
    Rose NR (2001) Infection, mimics, and autoimmune disease. J Clin Invest 107:943–944PubMedCrossRefGoogle Scholar
  10. 10.
    MacLellan WR, Lusis AJ (2003) Dilated cardiomyopathy: learning to live with yourself. Nat Med 9:1455–1456PubMedCrossRefGoogle Scholar
  11. 11.
    Limas CJ, Iakovis P, Anyfantakis A et al (2004) Familial clustering of autoimmune diseases in patients with dilated cardiomyopathy. Am J Cardiol 93:1189–1191PubMedCrossRefGoogle Scholar
  12. 12.
    Limas CJ (1996) Autoimmunity in dilated cardiomyopathy and the major histocompatibility complex. Int J Cardiol 54:113–116PubMedCrossRefGoogle Scholar
  13. 13.
    Golden B, Levin L, Ban Y et al (2005) Genetic analysis of families with autoimmune diabetes and thyroiditis: evidence for common and unique genes. J Clin Endocrinol Metab 90:4904–4911PubMedCrossRefGoogle Scholar
  14. 14.
    Magnusson Y, Hjalmarson A, Hoebeke J (1996) Beta1-adrenoceptor autoimmunity in cardiomyopathy. Int J Cardiol 54:137–141PubMedCrossRefGoogle Scholar
  15. 15.
    Engelhardt S, Hein L, Dyachenkow V et al (2004) Altered calcium handling is critically involved in the cardiotoxic effects of chronic beta-adrenergic stimulation. Circulation 109:1154–1160PubMedCrossRefGoogle Scholar
  16. 16.
    Freedman NJ, Lefkowitz RJ (2004) Anti-beta1-adrenergic receptor antibodies and heart failure: causation, not just correlation. J Clin Invest 113:1379–1382PubMedGoogle Scholar
  17. 17.
    Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93:896–906PubMedCrossRefGoogle Scholar
  18. 18.
    Hoffmann C, Leitz MR, Oberdorf-Maass S et al (2004) Comparative pharmacology of human beta-adrenergic receptor subtypes: characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol 362:151–159CrossRefGoogle Scholar
  19. 19.
    Bywater RP (2005) Location and nature of the residues important for ligand recognition in G-protein coupled receptors. J Mol Recognit 18:60–72PubMedCrossRefGoogle Scholar
  20. 20.
    Jahns R, Boivin V, Lohse MJ (2006) Beta1-adrenergic receptor-directed autoimmunity as a cause of dilated cardiomyopathy in rats. Int J Cardiol 112:7–14PubMedCrossRefGoogle Scholar
  21. 21.
    Peeters MC, Westen GJ van, Li Q et al (2010) Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. Trends Pharmacol Sci 32:35–42CrossRefGoogle Scholar
  22. 22.
    Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265PubMedCrossRefGoogle Scholar
  23. 23.
    Warne T, Serrano-Vega MJ, Baker JG et al (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491PubMedCrossRefGoogle Scholar
  24. 24.
    Jahns R, Boivin V, Krapf T et al (2000) Modulation of beta1-adrenoceptor activity by domain-specific antibodies and heart failure-associated autoantibodies. J Am Coll Cardiol 36:1280–1287PubMedCrossRefGoogle Scholar
  25. 25.
    Jahns R, Boivin V, Hein L et al (2004) Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest 113:1419–1429PubMedGoogle Scholar
  26. 26.
    Jane-wit D, Altuntas CZ, Johnson JM et al (2007) Beta1-adrenergic receptor autoantibodies mediate dilated cardiomyopathy by agonistically inducing cardiomyocyte apoptosis. Circulation 116:1–12CrossRefGoogle Scholar
  27. 27.
    Li Y, Heuser JS, Cunningham LC et al (2006) Mimicry and antibody-mediated cell signaling in autoimmune myocarditis. J Immunol 177:8234–8240PubMedGoogle Scholar
  28. 28.
    Mao W, Iwai C, Liu J et al (2008) Darbepoetin alfa exerts a cardioprotective effect in autoimmune cardiomyopathy via reduction of ER stress and activation of the PI3 K/Akt and STAT3 pathways. J Mol Cell Cardiol 45:250–260PubMedCrossRefGoogle Scholar
  29. 29.
    Jahns R, Boivin V, Schwarzbach V et al (2008) Pathological autoantibodies in cardiomyopathy. Autoimmunity 16:1–8Google Scholar
  30. 30.
    Fu M (2008) Autoimmunity and idiopathic dilated cardiomyopathy: where we stand? Autoimmunity 41:415–418PubMedCrossRefGoogle Scholar
  31. 31.
    Iwata M, Yoshikawa T, Baba A et al (2001) Autoantibodies against the second extracellular loop of beta1-adrenergic receptors predict ventricular tachycardia and sudden death in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 37:418–424PubMedCrossRefGoogle Scholar
  32. 32.
    Jahns R, Boivin V, Siegmund C et al (1999) Autoantibodies activating human beta1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation 99:649–654PubMedCrossRefGoogle Scholar
  33. 33.
    Staudt Y, Mobini R, Fu M et al (2003) Beta1-adrenoceptor antibodies induce apoptosis in adult isolated cardiomyocytes. Eur J Pharmacol 466:1–6PubMedCrossRefGoogle Scholar
  34. 34.
    Nikolaev VO, Boivin V, Stork S et al (2007) A novel fluorescence method for the rapid detection of functional beta1-adrenergic receptor autoantibodies in heart failure. J Am Coll Cardiol 50:423–431PubMedCrossRefGoogle Scholar
  35. 35.
    Dandel M, Wallukat G, Englert A et al (2012) Long-term benefits of immunoadsorption in beta1-adrenoceptor autoantibody-positive transplant candidates with dilated cardiomyopathy. Eur J Heart Fail [Epub ahead of print], PMID:22892122Google Scholar
  36. 36.
    Störk S, Boivin V, Horf R et al (2006) Stimulating autoantibodies directed against the cardiac beta1-adrenergic receptor predict increased mortality in idiopathic cardiomyopathy. Am Heart J 152:697–704PubMedCrossRefGoogle Scholar
  37. 37.
    Caforio AL, Calabrese F, Angelini A et al (2007) A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur Heart J 28:1326–1333PubMedCrossRefGoogle Scholar
  38. 38.
    Labovsky V, Smulski CR, Gomez K et al (2007) Anti-beta1-adrenergic receptor autoantibodies in patients with chronic Chagas heart disease. Clin Exp Immunol 148:440–449PubMedCrossRefGoogle Scholar
  39. 39.
    Holthoff HP, Zeibig S, Boivin V et al (2012) Detection of anti beta1-AR autoantibodies in heart failure by a cell-based competition ELISA. Circ Res 111:675–684PubMedCrossRefGoogle Scholar
  40. 40.
    Wallukat G, Boewer V, Förster A et al (1991) Anti-beta-adrenoceptor autoantibodies with beta-adrenergic agonistic activity from patients with myocarditis and dilated cardiomyopathy. Eur Heart J 21–29Google Scholar
  41. 41.
    Limas CJ, Goldenberg IF, Limas C (1992) Assessment of immune modulation of beta-adrenergic pathways in human dilated cardiomyopathy: influence of methodologic factors. Am Heart J 123:967–970PubMedCrossRefGoogle Scholar
  42. 42.
    Magnusson Y, Hoebeke J, Waagstein F et al (1994) Predictive role of beta1-autoantibodies in patients with idiopathic dilated cadiomyopathy treated with metoprolol (abstract). Circulation 90:I-543Google Scholar
  43. 43.
    Deubner N, Berliner D, Schlipp A et al (2010) Cardiac beta1-adrenoceptor autoantibodies in human heart disease: rationale and design of the Etiology, Titre-Course, and Survival (ETiCS) Study. Eur J Heart Fail 12:753–762PubMedCrossRefGoogle Scholar
  44. 44.
    Jahns R, Boivin V, Ertl G et al (2010) Pathogenetical Relevance of Autoantibodies in Dilated Cardiomyopathy. In: Parnham MJ (eds) Inflammatory cardiomyopathy—DCMi—pathogenesis and therapy; series progress in inflammation research. Birkhäuser Verlag AG, Basel, pp 121–139Google Scholar
  45. 45.
    Herda LR, Felix SB, Boege F (2012) Drug-like actions of autoantibodies against receptors of the autonomous nervous system and their impact on human heart function. Br J Pharmacol 166:847–857PubMedCrossRefGoogle Scholar
  46. 46.
    Fu LX, Herlitz H, Wallukat G et al (1994) Functional autoimmune epitope on alpha1-adrenergic receptors in patients with malignant hypertension. Lancet 344:1660–1663PubMedCrossRefGoogle Scholar
  47. 47.
    Luther H-P, Homuth V, Wallukat G (1997) α1-Adrenergic receptor antibodies in patients with primary hypertension. Hypertension 29:678–682PubMedCrossRefGoogle Scholar
  48. 48.
    Wenzel K, Haase H, Wallukat G et al (2008) Potential relevance of alpha(1)-adrenergic receptor autoantibodies in refractory hypertension. PLoS One 3:e3742PubMedCrossRefGoogle Scholar
  49. 49.
    Wallukat G, Homuth V, Fischer T et al (1999) Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest 103:945–952PubMedCrossRefGoogle Scholar
  50. 50.
    Dechend R, Muller DN, Wallukat G et al (2004) AT1 receptor agonistic antibodies, hypertension, and preeclampsia. Semin Nephrol 24:571–579PubMedGoogle Scholar
  51. 51.
    Hubel CA, Wallukat G, Wolf M et al (2007) Agonistic angiotensin II type 1 receptor autoantibodies in postpartum women with a history of preeclampsia. Hypertension 49:612–617PubMedCrossRefGoogle Scholar
  52. 52.
    Dragun D, Müller DN, Brasen JH et al (2005) Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med 352:558–569PubMedCrossRefGoogle Scholar
  53. 53.
    Dechend R, Gratze P, Wallukat G et al (2005) Agonistic autoantibodies to the AT1 receptor in a transgenic rat model of preeclampsia. Hypertension 45:742–746PubMedCrossRefGoogle Scholar
  54. 54.
    Dragun D, Philippe A, Catar R et al (2009) Autoimmune mediated G-protein receptor activation in cardiovascular and renal pathologies. Thromb Haemost 101:643–648PubMedGoogle Scholar
  55. 55.
    Zhou Z, Liao YH, Wei Y et al (2005) Cardiac remodeling after long-term stimulation by antibodies against the alpha1-adrenergic receptor in rats. Clin Immunol 114:164–173PubMedCrossRefGoogle Scholar
  56. 56.
    Luft FC, Dechend R, Dragun D et al (2008) Agonistic antibodies directed at cell surface receptors and cardiovascular disease. J Am Soc Hypertens 2:8–14PubMedCrossRefGoogle Scholar
  57. 57.
    Fu LXM, Magnusson Y, Bergh CH et al (1993) Localization of a functional autoimmune epitope on the second extracellular loop of the human muscarinic acetylcholine receptor 2 in patients with idiopathic dilated cardiomyopathy. J Clin Invest 91:1964–1968PubMedCrossRefGoogle Scholar
  58. 58.
    Fu MLX, Schulze W, Wallukat G et al (1996) A synthetic peptide corresponding to the second extracellular loop of the human M2 acetylcholine receptor induces pharmacological and morphological changes in cardiomyocytes by active immunization after 6 months in rabbits. Clin Immunol Immunopathol 78:203–207PubMedCrossRefGoogle Scholar
  59. 59.
    Wallukat G, Fu HM, Matsui S et al (1999) Autoantibodies against M2 muscarinic receptors in patients with cardiomyopathy display non-desensitized agonist-like effects. Life Sci 64:465–469PubMedCrossRefGoogle Scholar
  60. 60.
    Matsui S, Fu ML, Hayase M et al (1999) Active immunization of combined beta1-adrenoceptor and M2-muscarinic receptor peptides induces cardiac hypertrophy in rabbits. J Card Fail 5:246–254PubMedCrossRefGoogle Scholar
  61. 61.
    Hong CM, Zheng QS, Liu XT et al (2009) Effects of autoantibodies against M2 muscarinic acetylcholine receptors on rabbit atria in vivo. Cardiology 112:180–187PubMedCrossRefGoogle Scholar
  62. 62.
    Stavrakis S, Kem DC, Patterson E et al (2011) Opposing cardiac effects of autoantibody activation of beta-adrenergic and M2 muscarinic receptors in cardiac-related diseases. Int J Cardiol 148:331–336PubMedCrossRefGoogle Scholar
  63. 63.
    Jahns R, Schlipp A, Boivin V et al (2010) Targeting receptor-antibodies in immune-cardiomyopathy. Semin Thromb Hemost 36:212–218PubMedCrossRefGoogle Scholar
  64. 64.
    Haberland A, Wallukat G, Dahmen C et al (2011) Aptamer neutralization of beta1-adrenoceptor autoantibodies isolated from patients with cardiomyopathies. Circ Res 109:986–992PubMedCrossRefGoogle Scholar
  65. 65.
    Bristow MR (2011) Treatment of chronic heart failure with beta-adrenergic receptor antagonists: a convergence of receptor pharmacology and clinical cardiology. Circ Res 109:1176–1194PubMedCrossRefGoogle Scholar
  66. 66.
    Warren KG, Catz I, Ferenczi LZ et al (2006) Intravenous synthetic peptide MBP8298 delyed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-moth double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur J Neurol 13:887–895PubMedCrossRefGoogle Scholar
  67. 67.
    Tzartos SJ, Bitzopoulou K, Gavra I et al (2008) Antigen-specific apheresis of pathogenic autoantibodies from myasthenia gravis sera. Ann N Y Acad Sci 1132:291–299PubMedCrossRefGoogle Scholar
  68. 68.
    Wallukat G, Haberland A, Berg S et al (2012) The first aptamer-apheresis column specifically for clearing blood of beta1-receptor autoantibodies. Circ J [Epub ahead of print]Google Scholar
  69. 69.
    Felix SB, Staudt A (2008) Immunoadsorption as a teatment option in dilated cardiomyopathy. Autoimmunity 41:484–489PubMedCrossRefGoogle Scholar
  70. 70.
    Neubert K, Meister S, Moser K et al (2008) The proteasome inhibitor bortezemib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14:748–755PubMedCrossRefGoogle Scholar
  71. 71.
    Jahns R, Boivin V, Hein L et al (2005) A new cyclic receptor-peptide prevents development of heart dilatation and failure induced by antibodies activating cardiac beta1-adrenergic receptors. Circulation 112[Suppl II]:5(120)Google Scholar
  72. 72.
    Matsui S, Larsson L, Hayase M et al (2006) Specific removal of beta1-adrenoceptor autoantibodies by immunoabsorption in rabbits with autoimmune cardiomyopathy improved cardiac structure and function. J Mol Cell Cardiol 41:78–85PubMedCrossRefGoogle Scholar
  73. 73.
    Heymans S, Hirsch E, Anker SD et al (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11:119–129PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2012

Authors and Affiliations

  • V. Boivin-Jahns
    • 1
    • 2
  • A. Schlipp
    • 1
  • S. Hartmann
    • 1
    • 2
  • P. Panjwani
    • 1
  • K. Klingel
    • 3
  • M.J. Lohse
    • 1
    • 2
  • G. Ertl
    • 2
  • R. Jahns
    • 1
    • 2
  1. 1.Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, and Rudolf Virchow Center (RVZ), DFG-Forschungszentrum für BiomedizinUniversity of WürzburgWürzburgGermany
  2. 2.Comprehensive Heart Failure Centre (CHFC) and Interdisciplinary Bank of Biomaterials and Data Würzburg (ibdw)WürzburgGermany
  3. 3.Institute of Pathology, Department of Molecular PathologyUniversity Hospital TübingenTübingenGermany

Personalised recommendations