, Volume 37, Issue 6, pp 598–611

Genetics and metabolic cardiomyopathies

Main topic


Metabolic disorders encompass a heterogeneous group of conditions that commonly affect the heart and contribute adversely to cardiovascular outcomes. As the heart is a metabolically active organ, inborn errors in metabolism (IEMs) often present with cardiac manifestations such as cardiomyopathy, arrhythmia, and valvular dysfunction. More than 40 IEMs are reported to cause cardiomyopathy, including fatty acid oxidation defects, glycogen, lysosomal and perioxisome storage diseases, mitochondrial cardiomyopathies, organic acidaemias, aminoacidopathies and congenital disorders of glycosylation. Studies suggest that IEM account for only 5% of cardiomyopathies; however, their diagnosis is imperative to enable the effective institution of disease-specific management strategies. This review describes the more common genetic defects that affect metabolic pathways and give rise to heart muscle disease.


Genetics Inborn errors Metabolism Cardiomyopathy 

Genetik und metabolische Kardiomyopathien


Metabolische Störungen üben in der Regel einen negativen Einfluss auf das Herz-Kreislauf-System aus. Dies gilt für angeborene Störungen umso mehr. Sie zeigen sich klinisch als Kardiomyopathien, Rhythmusstörungen oder Herzklappenerkrankungen. Mehr als 40 angeborene Stoffwechselstörungen sind inzwischen bekannt. Zu ihnen gehören Störungen der Fettsäureoxidation, Glykogen-, lysosomale und peroxisomale Speichererkrankungen, mitochondriale Kardiomypathien, Azidämien, Aminoazidopathien sowie Störungen der Glykosylierung. Obgleich die angeborenen metabolischen Störungen nur 5% der Kardiomyopathien ausmachen, ist es unverzichtbar, sie zu erkennen, damit eine krankheitspezifische Behandlung vorgenommen werden kann. Die häufigsten Formen werden in diesem Beitrag beschrieben.


Genetik Angebore metabolische Störungen Stoffwechsel Kardiomyopathien 


  1. 1.
    Cox GF (2007) Diagnostic approaches to pediatric cardiomyopathy of metabolic genetic etiologies and their relation to therapy. Prog Pediatr Cardiol 24(1):15–25PubMedCrossRefGoogle Scholar
  2. 2.
    Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85(3):1093–1129PubMedCrossRefGoogle Scholar
  3. 3.
    Bonow R MD, Zipes D, Libby P (2011) Braunwald’s heart disease: a textbook of cardiovascular medicine. Vol. 2, 9. edn. ElsevierGoogle Scholar
  4. 4.
    Barth PG et al (2004) X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. Am J Med Genet 126A(4):349–354 (Part A)PubMedCrossRefGoogle Scholar
  5. 5.
    Breunig F, Wanner C (2008) Update on Fabry disease: kidney involvement, renal progression and enzyme replacement therapy. J Nephrol 21(1):32–37PubMedGoogle Scholar
  6. 6.
    Nishino I et al (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406(6798):906–910PubMedCrossRefGoogle Scholar
  7. 7.
    Ibdah JA, Yang Z, Bennett MJ (2000) Liver disease in pregnancy and fetal fatty acid oxidation defects. Mol Genet Metab 71(1–2):182–189Google Scholar
  8. 8.
    Saudubray JM et al (1999) Recognition and management of fatty acid oxidation defects: a series of 107 patients. J Inherit Metab Dis 22(4):488–502PubMedCrossRefGoogle Scholar
  9. 9.
    Olsen RK et al (2007) ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain 130(Pt 8):2045–2054PubMedCrossRefGoogle Scholar
  10. 10.
    Roe CR et al (2002) Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest 110(2):259–269PubMedGoogle Scholar
  11. 11.
    Bonnefont JP et al (2004) Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 25(5–6):495–520Google Scholar
  12. 12.
    Tein I (2003) Carnitine transport: pathophysiology and metabolism of known molecular defects. J Inherit Metab Dis 26(2–3):147–169Google Scholar
  13. 13.
    Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115(3):547–555PubMedGoogle Scholar
  14. 14.
    Koopman WJ, Willems PH, Smeitink JA (2012) Monogenic mitochondrial disorders. N Engl J Med 366(12):1132–1141PubMedCrossRefGoogle Scholar
  15. 15.
    Anan R et al (1995) Cardiac involvement in mitochondrial diseases. A study on 17 patients with documented mitochondrial DNA defects. Circulation 91(4):955–961PubMedCrossRefGoogle Scholar
  16. 16.
    Holmgren D et al (2003) Cardiomyopathy in children with mitochondrial disease; clinical course and cardiological findings. Eur Heart J 24(3):280–288PubMedCrossRefGoogle Scholar
  17. 17.
    Scaglia F et al (2004) Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 114(4):925–931PubMedCrossRefGoogle Scholar
  18. 18.
    Yeager AM (2002) Allogeneic hematopoietic cell transplantation for inborn metabolic diseases. Ann Hematol 81(Suppl 2):16–19CrossRefGoogle Scholar
  19. 19.
    Rohrbach M, Clarke JT (2007) Treatment of lysosomal storage disorders: progress with enzyme replacement therapy. Drugs 67(18):2697–2716PubMedCrossRefGoogle Scholar
  20. 20.
    Winchester B, Vellodi A, Young E (2000) The molecular basis of lysosomal storage diseases and their treatment. Biochem Soc Trans 28(2):150–154PubMedGoogle Scholar
  21. 21.
    Butters TD et al (2003) Small-molecule therapeutics for the treatment of glycolipid lysosomal storage disorders. Philos Trans R Soc B-Biol Sci 358(1433):927–945Google Scholar
  22. 22.
    Fan JQ (2007) Pharmacological chaperone therapy for lysosomal storage disorders—leveraging aspects of the folding pathway to maximize activity of misfolded mutant proteins. FEBS J 274(19):4943PubMedCrossRefGoogle Scholar
  23. 23.
    Grabowski GA (2008) Treatment perspectives for the lysosomal storage diseases. Expert Opin Emerg Drugs 13(1):197–211PubMedCrossRefGoogle Scholar
  24. 24.
    Mohan UR et al (2002) Cardiovascular changes in children with mucopolysaccharide disorders. Acta Paediatr 91(7):799–804PubMedCrossRefGoogle Scholar
  25. 25.
    Stephan MJ et al (1989) Mucopolysaccharidosis I presenting with endocardial fibroelastosis of infancy. Am J Dis Child 143(7):782–784PubMedGoogle Scholar
  26. 26.
    Hirth A, Berg A, Greve G (2007) Successful treatment of severe heart failure in an infant with Hurler syndrome. J Inherit Metab Dis 30(5):820PubMedCrossRefGoogle Scholar
  27. 27.
    Soliman OI et al (2007) Cardiac abnormalities in adults with the attenuated form of mucopolysaccharidosis type I. J Inherit Metab Dis 30(5):750–757PubMedCrossRefGoogle Scholar
  28. 28.
    Wraith JE (2005) The first 5 years of clinical experience with laronidase enzyme replacement therapy for mucopolysaccharidosis I. Expert Opin Pharmacother 6(3):489–506PubMedCrossRefGoogle Scholar
  29. 29.
    Braunlin EA, Berry JM, Whitley CB (2006) Cardiac findings after enzyme replacement therapy for mucopolysaccharidosis type I. Am J Cardiol 98(3):416–418PubMedCrossRefGoogle Scholar
  30. 30.
    Giugliani R, Harmatz P, Wraith JE (2007) Management guidelines for mucopolysaccharidosis VI. Pediatrics 120(2):405–418PubMedCrossRefGoogle Scholar
  31. 31.
    Wraith JE et al (2008) Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur J Pediatr 167(3):267–277PubMedCrossRefGoogle Scholar
  32. 32.
    Hishitani T et al (2000) Sudden death in Hunter syndrome caused by complete atrioventricular block. J Pediatr 136(2):268–269PubMedCrossRefGoogle Scholar
  33. 33.
    Muenzer J et al (1993) Severe mitral insufficiency in mucopolysaccharidosis type III-B (Sanfilippo syndrome). Pediatr Cardiol 14(2):130–132PubMedCrossRefGoogle Scholar
  34. 34.
    Valstar MJ et al (2008) Sanfilippo syndrome: a mini-review. J Inherit Metab DisGoogle Scholar
  35. 35.
    George R et al (2001) Severe valvular and aortic arch calcification in a patient with Gaucher’s disease homozygous for the D409H mutation. Clin Genet 59(5):360–363PubMedCrossRefGoogle Scholar
  36. 36.
    Kampmann C et al (2008) Cardiac manifestations of Anderson-Fabry disease in children and adolescents. Acta Paediatr 97(4):463–469PubMedCrossRefGoogle Scholar
  37. 37.
    Linhart A, Elliott PM (2007) The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart 93(4):528–535PubMedCrossRefGoogle Scholar
  38. 38.
    Hughes DA et al (2008) Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: a randomised, double-blind, placebo-controlled clinical trial of agalsidase alfa. Heart 94(2):153–158PubMedCrossRefGoogle Scholar
  39. 39.
    Grunewald S (2007) Congenital disorders of glycosylation: rapidly enlarging group of (neuro)metabolic disorders. Early Hum Dev 83(12):825–830PubMedCrossRefGoogle Scholar
  40. 40.
    Lin AE et al (1997) Cardiovascular malformations in Smith-Lemli-Opitz syndrome. Am J Med Genet 68(3):270–278PubMedCrossRefGoogle Scholar
  41. 41.
    Kollberg G et al (2007) Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N Engl J Med 357(15):1507–1514PubMedCrossRefGoogle Scholar
  42. 42.
    Regalado JJ, Rodriguez MM, Ferrer PL (1999) Infantile hypertrophic cardiomyopathy of glycogenosis type IX: isolated cardiac phosphorylase kinase deficiency. Pediatr Cardiol 20(4):304–307PubMedCrossRefGoogle Scholar
  43. 43.
    Hermans MM et al (2004) Twenty-two novel mutations in the lysosomal alpha-glucosidase gene (GAA) underscore the genotype-phenotype correlation in glycogen storage disease type II. Hum Mutat 23(1):47–56PubMedCrossRefGoogle Scholar
  44. 44.
    Winchester B et al (2008) Methods for a prompt and reliable laboratory diagnosis of Pompe disease: report from an international consensus meeting. Mol Genet Metab 93(3):275–281PubMedCrossRefGoogle Scholar
  45. 45.
    Ansong AK et al (2006) Electrocardiographic response to enzyme replacement therapy for Pompe disease. Genet Med 8(5):297–301PubMedCrossRefGoogle Scholar
  46. 46.
    Kishnani PS et al (2007) Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology 68(2):99–109PubMedCrossRefGoogle Scholar
  47. 47.
    Danon MJ et al (1981) Lysosomal glycogen storage disease with normal acid maltase. Neurology 31(1):51–57PubMedCrossRefGoogle Scholar
  48. 48.
    Kooi AJ van der et al (2008) Extension of the clinical spectrum of Danon disease. Neurology 70(16):1358–1359PubMedCrossRefGoogle Scholar
  49. 49.
    Shen JJ, Chen YT (2002) Molecular characterization of glycogen storage disease type III. Curr Mol Med 2(2):167–175PubMedCrossRefGoogle Scholar
  50. 50.
    Carvalho JS et al (1993) Cardiomyopathy of glycogen storage disease type III. Heart Vessels 8(3):155–159PubMedCrossRefGoogle Scholar
  51. 51.
    Moon JC et al (2003) Images in cardiovascular medicine. Myocardial fibrosis in glycogen storage disease type III. Circulation 107(7):e47PubMedCrossRefGoogle Scholar
  52. 52.
    Moses SW, Parvari R (2002) The variable presentations of glycogen storage disease type IV: a review of clinical, enzymatic and molecular studies. Curr Mol Med 2(2):177–188PubMedCrossRefGoogle Scholar
  53. 53.
    Ewert R et al (1999) Glycogenosis type IV as a seldom cause of cardiomyopathy—report about a successful heart transplantation. Z Kardiol 88(10):850–856PubMedCrossRefGoogle Scholar
  54. 54.
    Arad M et al (2002) Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 109(3):357–362PubMedGoogle Scholar
  55. 55.
    Murphy RT et al (2005) Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: natural history. J Am Coll Cardiol 45(6):922–930PubMedCrossRefGoogle Scholar
  56. 56.
    Gilbert-Barness E (2004) Review: metabolic cardiomyopathy and conduction system defects in children. Ann Clin Lab Sci 34(1):15–34PubMedGoogle Scholar
  57. 57.
    Simma B, Sperl W, Hammerer I (1990) GM1 gangliosidosis and dilated cardiomyopathy. Klin Padiatr 202(3):183–185PubMedCrossRefGoogle Scholar
  58. 58.
    Morrone A et al (2000) beta-galactosidase gene mutations affecting the lysosomal enzyme and the elastin-binding protein in GM1-gangliosidosis patients with cardiac involvement. Hum Mutat 15(4):354–366PubMedCrossRefGoogle Scholar
  59. 59.
    Bhattacharya K, Gibson SC, Pathi VL (2005) Mitral valve replacement for mitral stenosis secondary to Hunter’s syndrome. Ann Thorac Surg 80(5):1911–1912PubMedCrossRefGoogle Scholar
  60. 60.
    Barshes NR et al (2006) Evaluation and management of patients with propionic acidemia undergoing liver transplantation: a comprehensive review. Pediatr Transplant 10(7):773–781PubMedCrossRefGoogle Scholar
  61. 61.
    Cederbaum SD et al (2002) Carnitine membrane transporter deficiency: a long-term follow up and OCTN2 mutation in the first documented case of primary carnitine deficiency. Mol Genet Metab 77(3):195–201PubMedCrossRefGoogle Scholar
  62. 62.
    Chalmers RA et al (1997) Mitochondrial carnitine-acylcarnitine translocase deficiency presenting as sudden neonatal death. J Pediatr 131(2):220–225PubMedCrossRefGoogle Scholar
  63. 63.
    Pierre G et al (2007) Prospective treatment in carnitine-acylcarnitine translocase deficiency. J Inherit Metab Dis 30(5):815PubMedCrossRefGoogle Scholar
  64. 64.
    Guertl B, Noehammer C, Hoefler G (2000) Metabolic cardiomyopathies. Int J Exp Pathol 81(6):349–372PubMedCrossRefGoogle Scholar
  65. 65.
    Ratliff NB et al (2002) Cardiac arrest in a young marathon runner. Lancet 360(9332):542PubMedCrossRefGoogle Scholar
  66. 66.
    Djouadi F et al (2003) Correction of fatty acid oxidation in carnitine palmitoyl transferase 2-deficient cultured skin fibroblasts by bezafibrate. Pediatr Res 54(4):446–451PubMedCrossRefGoogle Scholar
  67. 67.
    Frerman FE, Goodman S (2001) Defects of electron transfer flavoprotein and electron transfer flavoprotein-ubiquinone oxireductase:glutaric aciduria type II. In: Scriver, Beaudet et al (eds) The metabolic and molecular baisi of inherited disease. 8th edn. McGraw-Hill, pp 2357–2365Google Scholar
  68. 68.
    Van Hove JL et al (2003) D,L-3-hydroxybutyrate treatment of multiple acyl-CoA dehydrogenase deficiency (MADD). Lancet 361(9367):1433–1435CrossRefGoogle Scholar

Copyright information

© Urban & Vogel, Muenchen 2012

Authors and Affiliations

  1. 1.The Heart HospitalLondonUK
  2. 2.University College LondonLondonUK

Personalised recommendations