Advertisement

Herz

, Volume 37, Issue 2, pp 166–171 | Cite as

Molekulare Mechanismen von Vorhofflimmern

Potenzielle Rolle der microRNAs als neues therapeutisches Ziel und als möglicher Biomarker
  • R. WakiliEmail author
  • S. Clauß
  • S. Kääb
Schwerpunkt

Zusammenfassung

Vorhofflimmern ist die häufigste klinische Arrhythmie, und die aktuell verfügbaren Therapien sind immer noch nicht wirklich zufriedenstellend. Die Entschlüsselung der molekularen Mechanismen soll dazu beitragen, neue Therapien zu entwickeln. Die Forschung auf dem Gebiet der microRNAs ist in den letzten Jahren in das Zentrum der kardiovaskulären Forschung gerückt. Dieser Artikel gibt eine Übersicht über die neusten Erkenntnisse bezüglich der Rolle der microRNA bei Vorhofflimmern und atrialen Remodellingprozessen sowie eine kurzen Ausblick auf die mögliche klinische Perspektive im Hinblick auf neue Therapieansätze und die potenzielle Rolle als Biomarker.

Schlüsselwörter

Vorhofflimmern Remodelling MicroRNA 

Molecular mechanisms of atrial fibrillation

Potential role of microRNAs as new therapeutic targets and potential biomarkers

Abstract

Atrial fibrillation represents the most common form of clinical arrhythmia in daily routine. However, current therapeutic options are still limited and a better understanding of the underlying molecular mechanisms is expected to contribute to the development of new therapeutic strategies. The scientific field of microRNA research has received a lot of attention in recent years, especially regarding cardiovascular research. This article gives a brief overview of the most recent developments in microRNA research in the field of atrial fibrillation and atrial remodelling processes. Furthermore, the clinical perspective of microRNAs as new therapeutic targets and as potential biomarkers is discussed.

Keywords

Atrial fibrillation Remodeling MicroRNAs 

Literatur

  1. 1.
    Breithardt G, Dobrev D, Doll N et al (2008) The German Competence Network on Atrial Fibrillation (AFNET). Herz 33(8):548–555PubMedCrossRefGoogle Scholar
  2. 2.
    Willems S, Hoffmann B, Steven D et al (2008) Catheter ablation for atrial fibrillation: clinically established or still an experimental method? Herz 33(6):402–411PubMedCrossRefGoogle Scholar
  3. 3.
    Sinner MF, Ellinor PT, Meitinger T et al (2011) Genome-wide association studies of atrial fibrillation: past, present, and future. Cardiovasc Res 89:701–709PubMedCrossRefGoogle Scholar
  4. 4.
    Wang Z, Lu Y, Yang B (2011) MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc Res 89:710–721PubMedCrossRefGoogle Scholar
  5. 5.
    Fichtlscherer S, De Rosa S, Fox H et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684PubMedCrossRefGoogle Scholar
  6. 6.
    Sinner M, Clauss S, Wakili R et al (2011) Recent advances in the genetics of atrial fibrillation: from rare and common genetic variants to microRNA signaling. Cardiogenetics 1(s1):e7CrossRefGoogle Scholar
  7. 7.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  8. 8.
    Wakili R, Voigt N, Kaab S et al (2011) Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest 121:2955–2968PubMedCrossRefGoogle Scholar
  9. 9.
    Iwasaki YK, Nishida K, Kato T, Nattel S (2011) Atrial fibrillation pathophysiology: implications for management. Circulation 124(20):2264–2274PubMedCrossRefGoogle Scholar
  10. 10.
    Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226PubMedCrossRefGoogle Scholar
  11. 11.
    Nattel S, Burstein B, Dobrev D (2008) Atrial remodelling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol 1(1):62–73PubMedCrossRefGoogle Scholar
  12. 12.
    Voigt N, Trafford A, Wehrens X et al (2011) Mechanisms underlying delayed afterdepolarisations and triggered activity in human atrial fibrillation. Circulation 124:A13977Google Scholar
  13. 13.
    Wakili R, Qi X, Harada M et al (2011) Arrhythmogenic role and underlying mechanisms of atrial triggered activity induced by experimental heart failure. Heart Rhythm 8(5S):PO1–06,S104Google Scholar
  14. 14.
    Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation: a study in awake chronically instrumented goats. Circulation 92(7):1954–1968PubMedGoogle Scholar
  15. 15.
    Burstein B, Comtois P, Michael G et al (2009) Changes in connexin expression and the atrial fibrillation substrate in congestive heart failure. Circ Res 105(12):1213–1222PubMedCrossRefGoogle Scholar
  16. 16.
    Burstein B, Nattel S (2008) Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol 51(8):802–809PubMedCrossRefGoogle Scholar
  17. 17.
    Akoum N, Daccarett M, McGann C et al (2011) Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: a DE-MRI guided approach. J Cardiovasc Electrophysiol 22(1): 16–22PubMedCrossRefGoogle Scholar
  18. 18.
    Verma A, Wazni OM, Marrouche NF et al (2005) Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: an independent predictor of procedural failure. J Am Coll Cardiol 45(2):285–292PubMedCrossRefGoogle Scholar
  19. 19.
    Yang B, Lin H, Xiao J et al (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491PubMedCrossRefGoogle Scholar
  20. 20.
    Girmatsion Z, Biliczki P, Bonauer A et al (2009) Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm 6:1802–1809PubMedCrossRefGoogle Scholar
  21. 21.
    Terentyev D, Belevych AE, Terentyeva R et al (2009) miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res 104:514–521PubMedCrossRefGoogle Scholar
  22. 22.
    Lu Y, Zhang Y, Wang N et al (2010) MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122:2378–2387PubMedCrossRefGoogle Scholar
  23. 23.
    Shan H, Zhang Y, Lu Y et al (2009) Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc Res 83:465–472PubMedCrossRefGoogle Scholar
  24. 24.
    Duisters RF, Tijsen AJ, Schroen B et al (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104:170–178, (6p following 178)PubMedCrossRefGoogle Scholar
  25. 25.
    Chen Y, Wakili R, Luo X et al (2010) MicroRNA changes and atrial arrhythmogenic remodeling in tachycardiomyopathic heart failure. Circulation 122:A12988Google Scholar
  26. 26.
    Wakili R, Dawson K, Ordog B et al (2011) MicroRNA 29b – a mechanistic contributor and biomarker in atrial fibrillation. Heart Rhythm 8(5S):PO3–102,S255Google Scholar
  27. 27.
    Adam O, Löhfelm B, Thum T et al (2011) Bedeutung der microRNA-21 bei atrialer Fibrose und Vorhofflimmern. Clin Res Cardiol 100(Suppl 1):V152Google Scholar
  28. 28.
    Thum T (2012) MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med 4(1):3–14PubMedCrossRefGoogle Scholar
  29. 29.
    Zhong X, Chung AC, Chen HY et al (2011) Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 22(9):1668–1681PubMedCrossRefGoogle Scholar
  30. 30.
    Fang YX, Xue JL, Shen Q et al (2012) miR-7 inhibits tumor growth and metastasis by targeting the PI3K/AKT pathway in hepatocellular carcinoma. Hepatology: doi: 10.1002/hep.25576 [Epub ahead of print]Google Scholar
  31. 31.
    Tijsen AJ, Creemers EE, Moerland PD et al (2010) miR423–5p as a circulating biomarker for heart failure. Circ Res 106(6):1035–1039PubMedCrossRefGoogle Scholar
  32. 32.
    Mínguez B, Lachenmayer A (2011) Diagnostic and prognostic molecular markers in hepatocellular carcinoma. Dis Markers 31(3):181–190PubMedGoogle Scholar

Copyright information

© Urban & Vogel, Muenchen 2012

Authors and Affiliations

  1. 1.Medizinische Klinik und Poliklinik IKlinikum der Universität München - Campus GroßhadernMünchenDeutschland

Personalised recommendations