Advertisement

Herz

, 36:417 | Cite as

The diagnostic value of intracoronary optical coherence tomography

Main topic/CME

Abstract

Optical coherence tomography (OCT) is a novel light-based imaging modality for application in the coronary circulation. Compared to conventional intravascular ultrasound, OCT has a ten-fold higher image resolution. This advantage has seen OCT successfully applied in the assessment of atherosclerotic plaque, stent apposition, and tissue coverage, heralding a new era in intravascular coronary imaging. The present article discusses the diagnostic value of OCT, both in cardiovascular research as well as in potential clinical application.

The unparalleled high image resolution and strong contrast between the coronary lumen and the vessel wall structure enable fast and reliable image interpretation. OCT makes it possible to visualize the presence of atherosclerotic plaque in order to characterize the structure and extent of coronary plaque and to quantify lumen dimensions, as well as the extent of lumen narrowing, in unprecedented detail. Based on optical properties, OCT is able to distinguish different tissue types, such as fibrous, lipid-rich, necrotic, or calcified tissue. Furthermore, OCT is able to cover the visualization of a variety of features of atherosclerotic plaques that have been associated with rapid lesion progression and clinical events, such as thin cap fibroatheroma, fibrous cap thickness, dense macrophage infiltration, and thrombus formation. These unique features allow the use of OCT to assess patients with acute coronary syndrome and to study the dynamic nature of coronary atherosclerosis in vivo and over time. This permits new insights into plaque progression, regression, and rupture, as well as the study of effects of therapies aimed at modulating these developments.

Today’s OCT technology allows high detail resolution as well as fast and safe clinical image acquisition. These unique features have established OCT as the gold standard for the assessment of coronary stents. This technique makes it possible to study stent expansion, peri-procedural vessel trauma, and the interaction of the stent with the vessel wall down to the level of individual stent struts, both acutely as well as in the long term, where it is has proven extremely sensitive to the detection of even minor amounts of tissue coverage. These qualities render OCT indispensable to addressing vexing clinical questions such as the relationship of drug-eluting stent deployment, vascular healing, the true time course of endothelial stent coverage, and late stent thrombosis. This may also better guide the optimal duration of dual anti-platelet therapy that currently remains unclear and relatively empirical.

In the future, OCT might emerge, parallel to its undisputed position in research, as the tool of choice in all clinical scenarios where angiography is limited by its nature as a two-dimensional luminogram.

Keywords

Morphology Intravascular coronary imaging Coronary circulation Atherosclerotic plaque Coronary stents 

Zur Wertigkeit der intrakoronaren optischen Kohärenztomographie

Zusammenfassung

Die intrakoronare optische Kohärenztomographie (OCT) ist ein relativ neues optisches Verfahren zur Beurteilung der Koronarmorphologie. OCT erstellt, ähnlich wie die konventionelle intrakoronare Ultraschallbildgebung, ein Querschnittsbild der Gefäßwand, mit einer 10-fach höheren Auflösung. Der Beitrag fasst die Erkenntnisse zum diagnostischen Vermögen der OCT zusammen und bewertet sie im Hinblick auf eine mögliche breitere klinische Anwendung.

OCT erlaubt eine klare und detaillierte Darstellung endoluminaler Strukturen. Atherosklerotische Plaques können schon im frühen Stadium sicher erkannt und detailliert erfasst werden. Verschiedene Plaquekomponenten können aufgrund ihrer optischen Eigenschaften verlässlich typisiert werden, in lipidreiches, nekrotisches, verkalktes und fibröses Gewebe. Darüber hinaus können morphologische Marker, die in Studien mit klinischen Ereignissen assoziiert wurden, wie ausgedehnte Fibroatherome, dünne fibröse Kappen, Makrophageninfiltrationen und Thromben diagnostiziert werden. Mit diesem diagnostischen Profil ermöglicht OCT Analysen bei akutem Koronarsyndrom und vor allem longitudinale Untersuchungen zum Verständnis von Plaqueprogression, -regression sowie -ruptur und ihrer therapeutischen Modifikation. Wegen der hohen Detailauflösung von OCT etablierte sich diese Methode rasch zum neuen Goldstandard zur Beurteilung von Koronarstents, sowohl im akuten als auch im Langzeitverlauf. OCT erlaubt die Analyse individueller Stent-Struts, ihrer Apposition und Neointimabekleidung im Lauf der Zeit. Diese Informationen sind wertvoll für die Entwicklung von Koronarstents, aber auch zur Therapie von Stentrestenose und Thrombose. In Zukunft können diese Einblicke möglicherweise auch zu einer Optimierung der antithrombozytären Therapie beitragen.

Die hohe Detailauflösung sowie die schnelle, patienten- und anwenderfreundliche Bildgebung machen die OCT, neben ihrer längst akzeptierten Rolle in der Forschung, prinzipiell attraktiv für eine breitere klinische Anwendung in all den Situationen, in denen die Angiographie aufgrund ihres zweidimensionalen Luminogrammcharakters limitiert ist.

Zusammenfassung

Morphology Intravaskuläre Bildgebung Koronarkreislauf Atherosklerotische Plaque Koronarstents 

Notes

Conflict of interest

The corresponding author states that there are no conflicts of interest.

References

  1. 1.
    Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181PubMedCrossRefGoogle Scholar
  2. 2.
    Okamura T, Gonzalo N, Gutierrez Chico JL et al (2010) Does the second generation OCT improve safety and feasibility in clinical practice? A single center experience. J Am Coll Cardiol 55:E1906Google Scholar
  3. 3.
    Gonzalo N TG, Serruys PW, Soest G van et al (2010) Second generation optical coherence tomography in clinical practice. High speed data acquisition shows excellent reproducibility in patients undergoing percutaneous coronary interventions. Rev Esp Cardiol (in press)Google Scholar
  4. 4.
    Guagliumi G, Musumeci G, Sirbu V et al (n d) Optical coherence tomography assessment of in vivo vascular response after implantation of overlapping bare-metal and drug-eluting stents. JACC Cardiovasc Interv 3:531–539Google Scholar
  5. 5.
    Barlis P, Regar E, Serruys PW et al (2010) An optical coherence tomography study of a biodegradable vs. durable polymer-coated limus-eluting stent: a LEADERS trial sub-study. Eur Heart J 31:165–176PubMedCrossRefGoogle Scholar
  6. 6.
    Michelson A, Morley E (1887) On the relative motion of the earth and the luminiferous aether. Philos Mag S5:449–463Google Scholar
  7. 7.
    Schmitt JM, Knuttel A, Yadlowsky M, Eckhaus MA (1994) Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys Med Biol 39:1705–1720PubMedCrossRefGoogle Scholar
  8. 8.
    Schmitt JM (1999) Optical coherence tomography (OCT): a review. IEEE J. Sel Top Quantum Electron 5:1205–1215CrossRefGoogle Scholar
  9. 9.
    Yun S, Tearney G, Bouma B et al (2003) High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. Opt Express 11:3598–3604PubMedCrossRefGoogle Scholar
  10. 10.
    Chinn SR, Swanson EA, Fujimoto JG (1997) Optical coherence tomography using a frequency-tunable optical source. Opt Lett 22:340–342PubMedCrossRefGoogle Scholar
  11. 11.
    Lim H, Mujat M, Kerbage C et al (2006) High-speed imaging of human retina in vivo with swept-source optical coherence tomography. Opt Express 14:12902–12908PubMedCrossRefGoogle Scholar
  12. 12.
    Tanimoto S, Rodriguez-Granillo G, Barlis P et al (2008) A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection. Catheter Cardiovasc Interv 72:228–235PubMedCrossRefGoogle Scholar
  13. 13.
    Gonzalo N, Garcia-Garcia HM, Serruys PW et al (2009) Reproducibility of quantitative optical coherence tomography for stent analysis. EuroIntervention 5:224–232PubMedCrossRefGoogle Scholar
  14. 14.
    Okamura T, Gonzalo N, Gutierrez-Cjico JL et al (2010) Reproducibility of coronary Fourier domain optical coherence tomography: quanitative analysis of in vivo stented coronary arteries using three different software packages. EuroIntervention 6:371–379PubMedCrossRefGoogle Scholar
  15. 15.
    Kawasaki M, Bouma BE, Bressner J et al (2006) Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J Am Coll Cardiol 48:81–88PubMedCrossRefGoogle Scholar
  16. 16.
    Kume T, Akasaka T, Kawamoto T et al (2005) Assessment of coronary intima – media thickness by optical coherence tomography: comparison with intravascular ultrasound. Circ J 69:903–907PubMedCrossRefGoogle Scholar
  17. 17.
    Zimarino M, Prati F, Stabile E et al (2007) Optical coherence tomography accurately identifies intermediate atherosclerotic lesions – an in vivo evaluation in the rabbit carotid artery. Atherosclerosis 193:94–101PubMedCrossRefGoogle Scholar
  18. 18.
    Kolodgie FD, Burke AP, Nakazawa G, Virmani R (2007) Is pathologic intimal thickening the key to understanding early plaque progression in human atherosclerotic disease? Arterioscler Thromb Vasc Biol 27:986–989PubMedCrossRefGoogle Scholar
  19. 19.
    Yabushita H, Bouma BE, Houser SL et al (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645PubMedCrossRefGoogle Scholar
  20. 20.
    Kubo T, Imanishi T, Takarada S et al (2007) Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 50:933–939PubMedCrossRefGoogle Scholar
  21. 21.
    Kume T, Akasaka T, Kawamoto T et al (2006) Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol 97:1172–1175PubMedCrossRefGoogle Scholar
  22. 22.
    Prati F, Zimarino M, Stabile E et al (2008) Does optical coherence tomography identify arterial healing after stenting? An in vivo comparison with histology, in a rabbit carotid model. Heart 94:217–221PubMedCrossRefGoogle Scholar
  23. 23.
    Prati F, Regar E, Mintz GS et al (2010) Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 31:401–415PubMedCrossRefGoogle Scholar
  24. 24.
    Manfrini O, Mont E, Leone O et al (2006) Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol 98:156–159PubMedCrossRefGoogle Scholar
  25. 25.
    Low AF KY, Yiong-Huak C, Tearney GJ et al (n d) In vivo characterisation of coronary plaques with conventional grey-scale intravascular ultrasound: correlation with optical coherence tomography. EuroIntervention 4:626–632Google Scholar
  26. 26.
    Jang IK, Tearney GJ, MacNeill B et al (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555PubMedCrossRefGoogle Scholar
  27. 27.
    Barlis P, Serruys PW, Gonzalo N et al (2008) Assessment of culprit and remote coronary narrowings using optical coherence tomography with long-term outcomes. Am J Cardiol 102:391–395PubMedCrossRefGoogle Scholar
  28. 28.
    Kume T, Akasaka T, Kawamoto T et al (2006) Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol 97:1713–1717PubMedCrossRefGoogle Scholar
  29. 29.
    Tearney GJ, Yabushita H, Houser SL et al (2003) Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107:113–119PubMedCrossRefGoogle Scholar
  30. 30.
    Regar E, Beusekom HM van, Giessen WJ van der, Serruys PW (2005) Images in cardiovascular medicine. Optical coherence tomography findings at 5-year follow-up after coronary stent implantation. Circulation 112:e345–e346PubMedCrossRefGoogle Scholar
  31. 31.
    Gonzalo N, Tearney GJ, Serrruys PW et al (2010) Second generation optical coherence tomography. Rev Esp Cardiol (in press)Google Scholar
  32. 32.
    Soest G van, Goderie T, Regar E et al (2010) Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J Biomed Opt 15:011105PubMedCrossRefGoogle Scholar
  33. 33.
    Kume T, Okura H, Yamada R et al (2009) Frequency and spatial distribution of thin-cap fibroatheroma assessed by 3-vessel intravascular ultrasound and optical coherence tomography: an ex vivo validation and an initial in vivo feasibility study. Circ J 73:1086–1091PubMedCrossRefGoogle Scholar
  34. 34.
    Tanaka A, Imanishi T, Kitabata H et al (2008) Distribution and frequency of thin-capped fibroatheromas and ruptured plaques in the entire culprit coronary artery in patients with acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol 102:975–979PubMedCrossRefGoogle Scholar
  35. 35.
    Gonzalo N, Tearney GJ, Soest G van et al (2011) Witnessed coronary plaque pupture during cardiac catheterization. JACC Cardiovascular Imaging (in press)Google Scholar
  36. 36.
    Kubo T IT, Kitabata H, Kuroi A et al (2008) Comparison of vascular response after sirolimus eluting stent implantation between patients with unstable and stable angina pectoris. A serial optical coherence tomography study. J Am Coll Cardiol Imaging 1:475–484Google Scholar
  37. 37.
    Fujii K, Kawasaki D, Masutani M et al (n d) OCT assessment of thin-cap fibroatheroma distribution in native coronary arteries. JACC Cardiovasc Imaging 3:168–175Google Scholar
  38. 38.
    Nadkarni SK, Pierce MC, Park BH et al (2007) Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol 49:1474–1481PubMedCrossRefGoogle Scholar
  39. 39.
    Hong MK, Mintz GS, Lee CW et al (2006) Late stent malapposition after drug-eluting stent implantation: an intravascular ultrasound analysis with long-term follow-up. Circulation 113:414–419PubMedCrossRefGoogle Scholar
  40. 40.
    Tanabe K, Serruys PW, Degertekin M et al (2005) Incomplete stent apposition after implantation of paclitaxel-eluting stents or bare metal stents: insights from the randomized TAXUS II trial. Circulation 111:900–905PubMedCrossRefGoogle Scholar
  41. 41.
    Bouma BE, Tearney GJ, Yabushita H et al (2003) Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89:317–320PubMedCrossRefGoogle Scholar
  42. 42.
    Tanigawa J, Barlis P, Dimopoulos K, Di Mario C (2008) Optical coherence tomography to assess malapposition in overlapping drug-eluting stents. EuroIntervention 3:580–583PubMedCrossRefGoogle Scholar
  43. 43.
    Tanigawa J, Barlis P, Kaplan S, Goktekin OCD (2006) Stent strut apposition in complex lesions using optical coherence tomography. Am J Cardiol 98[Suppl 1]:97 MGoogle Scholar
  44. 44.
    Regar E, Schaar J, Serruys PW (2006) Images in cardiology. Acute recoil in sirolimus eluting stent: real time, in vivo assessment with optical coherence tomography. Heart 92:123PubMedCrossRefGoogle Scholar
  45. 45.
    Gonzalo N, Serruys PW, Okamura T et al (2009) Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach. Heart 95:1913–1919PubMedCrossRefGoogle Scholar
  46. 46.
    Gonzalo N, Serruys PW, Okamura T et al (2010) Relation between plaque type and dissections at the edges after stent implantation: An optical coherence tomography study. Int J Cardiol [epub ahead of print]Google Scholar
  47. 47.
    Futamatsu H, Sabate M, Angiolillo DJ et al (2006) Characterization of plaque prolapse after drug-eluting stent implantation in diabetic patients: a three-dimensional volumetric intravascular ultrasound outcome study. J Am Coll Cardiol 48:1139–1145PubMedCrossRefGoogle Scholar
  48. 48.
    Guagliumi G, Costa MA, Sirbu V et al (2011) Strut coverage and late malapposition with paclitaxel-eluting stents compared with bare metal stents in acute myocardial infarction: optical coherence tomography substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) Trial. Circulation 123:274–281PubMedCrossRefGoogle Scholar
  49. 49.
    Ormiston JA, Serruys PW, Regar E et al (2008) First–in-man evaluation of a bioabsorbable-everolimus eluting coronary stent system (BVS) in the treatment of patients with single de-novo native coronary artery lesions: The ABSORB Trial. Lancet 2:371:899–907Google Scholar
  50. 50.
    Serruys PW, Ormiston JA, Onuma Y et al (2009) A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373:897–910PubMedCrossRefGoogle Scholar
  51. 51.
    Serruys PW, Onuma Y, Ormiston JA et al (2011) Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation 122:2301–2312CrossRefGoogle Scholar
  52. 52.
    Finn AV, Joner M, Nakazawa G et al (2007) Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 115:2435–2441PubMedCrossRefGoogle Scholar
  53. 53.
    Finn AV, Nakazawa G, Ladich E et al (2008) Does underlying plaque morphology play a role in vessel healing after drug-eluting stent implantation? JACC Cardiovasc Imaging 1:485–488PubMedCrossRefGoogle Scholar
  54. 54.
    Beusekom HM van, Serruys PW (n d) Drug-eluting stent endothelium: presence or dysfunction. JACC Cardiovasc Interv 3:76–77Google Scholar
  55. 55.
    Beusekom HM van, Whelan DM, Hofma SH et al (1998) Long-term endothelial dysfunction is more pronounced after stenting than after balloon angioplasty in porcine coronary arteries. J Am Coll Cardiol 32:1109–1117PubMedCrossRefGoogle Scholar
  56. 56.
    Okamura T, Serruys PW, Regar E (2010) Cardiovascular flashlight. The fate of bioresorbable struts located at a side branch ostium: serial three-dimensional optical coherence tomography assessment. Eur Heart J 31:2179PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel, Muenchen 2011

Authors and Affiliations

  • E. Regar
    • 1
  • J. Ligthart
    • 1
  • N. Bruining
    • 1
  • G. van Soest
    • 1
  1. 1.Department of Interventional CardiologyThorax Center, Room Ba 585, Erasmus MCRotterdamThe Netherlands

Personalised recommendations