Herz

, 36:222

Therapie des chronischen Koronararterienverschlusses

Aktueller Stand und Perspektiven
Schwerpunkt/CME

Zusammenfassung

In dieser Übersicht werden der gegenwärtige Stand der Behandlung eines chronischen Koronarverschlusses (CTO) und die Perspektiven durch neue Behandlungsmöglichkeiten diskutiert. Die auch in den aktuellen europäischen Leitlinien anerkannte Indikation für die Revaskularisation ist das Vorhandensein typischer Beschwerden, der Nachweis einer Ischämie über 10% des totalen Myokards und bei Patienten mit Mehrgefäßerkrankung das Ziel der kompletten Revaskularisation. Die überwiegende Mehrheit der Patienten mit CTO erfüllt diese Kriterien, wird aber gegenwärtig dennoch nicht in der erwarteten Häufigkeit interventionell behandelt. Häufig genannte Gründe sind die niedrige Erfolgs- und die hohe Rezidivrate. Beide Probleme sind aber zum einen durch die medikamentenbeschichteten Stents (DES) und durch neue Drahttechniken und -strategien soweit verbessert, dass man nahezu vergleichbare Ergebnisse erreichen kann wie bei nicht verschlossenen Koronarläsionen. Zwar sollten fortentwickelte Ansätze wie die retrograde Rekanalisationstechnik wenigen spezialisierten Institutionen vorbehalten sein, dennoch sind durch konsequente Fortbildung und Einsatz moderner Techniken auch ohne diese Spezialtechniken deutliche Verbesserungen erreichbar. Trotz dieser aggressiveren Ansätze zur Passage eines verschlossenen Gefäßes ist die Komplikationsrate nicht höher als bei nichtokklusiven Läsionen, wenn die spezifischen Komplikationen der Rekanalisation durch sorgfältige Vorgehensweise vermieden werden. Weitere Verbesserungen der Technik lässt der Einsatz moderner Bildgebungsverfahren wie intravaskulärer Ultraschall und hochauflösende CT-Darstellung der Koronararterien erwarten.

Schlüsselwörter

Chronischer Koronarverschluss Koronarintervention Indikation Technik Prognose 

Treatment strategies for chronic total occlusion

Current status and outlook

Abstract

The present article discusses the current status of treatment strategies for chronic total occlusion (CTO) and the prospects offered by new therapies. The indication for revascularisation recognized in the current European guidelines includes the presence of typical symptoms and evidence of ischemia of over 10% of the total myocardium, while in patients with multiple vascular diseases the aim is complete revascularisation. Although the vast majority of patients with CTO fulfil these criteria, they are currently not receiving interventional treatment as frequently as expected. The reasons often given for this include the low success rates and high recurrence rates. However, both problems have been improved by drug-eluting stents (DES) on the one hand and by wire techniques and strategies on the other, such that results almost comparable with non-occluded coronary lesions can be achieved. While more advanced approaches like retrograde recanalization should be restricted to specialized centres, marked improvements can be achieved even without these special techniques by means of consistent further training and the application of modern techniques. Despite the aggressiveness of these approaches to pass through an occluded artery, the complication rate is not higher than with non-occluded lesions when the specific complications of recanalization are avoided in a careful approach. Further technical improvements are expected with the use of modern imaging techniques such as intravascular ultrasound and high-resolution CT imaging of coronary arteries.

Keywords

Chronic total occlusion Coronary intervention Indication Technique Prognosis 

Literatur

  1. 1.
    Di Mario C, Werner GS, Sianos G et al (2007) European perspective in the recanalisation of Chronic Total Occlusions (CTO): consensus document from the EuroCTO Club. EuroIntervention 3:30–43Google Scholar
  2. 2.
    Hochman JS, Lamas GA, Buller CE et al (2006) Coronary intervention for persistent occlusion after myocardial infarction. N Engl J Med 355:2395–2407PubMedCrossRefGoogle Scholar
  3. 3.
    Werner GS, Di Mario C, Galassi AR et al (2008) Chronic total coronary occlusions and the occluded artery trial. A critical appraisal. EuroIntervention 4:23–27PubMedCrossRefGoogle Scholar
  4. 4.
    Christofferson RD, Lehmann KG, Martin GV et al (2005) Effect of chronic total coronary occlusion on treatment strategy. Am J Cardiol 95:1088–1091PubMedCrossRefGoogle Scholar
  5. 5.
    Werner GS, Gitt AK, Zeymer U et al (2009) Chronic total coronary occlusions in patients with stable angina pectoris: impact on therapy and outcome in present day clinical practice. Clin Res Cardiol 98:435–441PubMedCrossRefGoogle Scholar
  6. 6.
    Schaaf RJ van der, Vis MM, Sjauw KD et al (2006) Impact of multivessel coronary disease on long-term mortality in patients with ST-elevation myocardial infarction is due to the presence of a chronic total occlusion. Am J Cardiol 98:1165–1169PubMedCrossRefGoogle Scholar
  7. 7.
    Strauss BH (2010) Early Perspectives from the Canadian Multicenter CTO Longitudinal Registry. CTO Summitt, New YorkGoogle Scholar
  8. 8.
    Serruys PW, Morice MC, Kappetein AP et al (2009) Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 360:961–972PubMedCrossRefGoogle Scholar
  9. 9.
    Abbott JD, Kip KE, Vlachos HA et al (2006) Recent trends in the percutaneous treatment of chronic total coronary occlusions. Am J Cardiol 97:1691–1696PubMedCrossRefGoogle Scholar
  10. 10.
    Werner GS, Hochadel M, Zeymer U et al (2010) Contemporary success and complication rates of percutaneous coronary intervention for chronic total coronary occlusions: results from the ALKK quality control registry of 2006. EuroIntervention 6:361–366PubMedCrossRefGoogle Scholar
  11. 11.
    Prasad A, Rihal CS, Lennon RJ et al (2007) Trends in outcomes after percutaneous coronary intervention for chronic total occlusions: a 25-year experience from the Mayo Clinic. J Am Coll Cardiol 49:1611–1618PubMedCrossRefGoogle Scholar
  12. 12.
    Wijns W, Kolh P, Danchin N et al (2010) Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 31(20):2501–2555PubMedCrossRefGoogle Scholar
  13. 13.
    Werner GS, Surber R, Ferrari M et al (2006) The functional reserve of collaterals supplying long-term chronic total coronary occlusions in patients without prior myocardial infarction. Eur Heart J 27(20):2406–2412PubMedCrossRefGoogle Scholar
  14. 14.
    Kirschbaum SW, Baks T, Ent M van den et al (2008) Evaluation of left ventricular function three years after percutaneous recanalization of chronic total coronary occlusions. Am J Cardiol 101:179–185PubMedCrossRefGoogle Scholar
  15. 15.
    Surber R, Schwarz G, Figulla HR, Werner GS (2005) Resting 12-lead electrocardiogram as a reliable predictor of functional recovery after recanalization of chronic total coronary occlusions. Clin Cardiol 28:293–297PubMedCrossRefGoogle Scholar
  16. 16.
    Valenti R, Migliorini A, Signorini U et al (2008) Impact of complete revascularization with percutaneous coronary intervention on survival in patients with at least one chronic total occlusion. Eur Heart J 29(19):2336–2342PubMedCrossRefGoogle Scholar
  17. 17.
    Joyal D, Afilalo J, Rinfret S (2010) Effectiveness of recanalization of chronic total occlusions: a systematic review and meta-analysis. Am Heart J 160:179–187PubMedCrossRefGoogle Scholar
  18. 18.
    Suero JA, Marso SP, Jones PG et al (2001) Procedural outcomes and long-term survival among patients undergoing percutaneous coronary intervention of a chronic total occlusion in native coronary arteries: a 20-year experience. J Am Coll Cardiol 38:409–414PubMedCrossRefGoogle Scholar
  19. 19.
    Hoye A, Domburg RT van, Sonnenschein K, Serruys PW (2005) Percutaneous coronary intervention for chronic total occlusions: the Thoraxcenter experience 1992–2002. Eur Heart J 26:2630–2636PubMedCrossRefGoogle Scholar
  20. 20.
    Safley DM, House JA, Marso SP et al (2008) Improvement in survival following successful percutaneous coronary intervention of coronary chronic total occlusions: variability by target vessel. JACC Cardiovasc Interv 1:295–302PubMedCrossRefGoogle Scholar
  21. 21.
    Rathore S, Matsuo H, Terashima M et al (2009) Procedural and in-hospital outcomes after percutaneous coronary intervention for chronic total occlusions of coronary arteries 2002 to 2008: impact of novel guidewire techniques. JACC Cardiovasc Interv 2:489–497PubMedCrossRefGoogle Scholar
  22. 22.
    Galassi AR, Werner GS, Sianos G et al (2010) Highlights and essentials from the first“Experts-live” course of the EuroCTO club. EuroIntervention 5:888–890PubMedCrossRefGoogle Scholar
  23. 23.
    Werner GS, Diedrich J, Scholz KH et al (1997) Vessel reconstruction in total coronary occlusions with a long subintimal wire pathway: use of multiple stents under guidance of intravascular ultrasound. Cathet Cardiovasc Diagn 40:46–51PubMedCrossRefGoogle Scholar
  24. 24.
    Rathore S, Terashima M, Suzuki T (2009) Value of intravascular ultrasound in the management of coronary chronic total occlusions. Catheter Cardiovasc Interv 4(6):873–878CrossRefGoogle Scholar
  25. 25.
    Surmely JF, Tsuchikane E, Katoh O et al (2006) New concept for CTO recanalization using controlled antegrade and retrograde subintimal tracking: the CART technique. J Invasive Cardiol 18:334–338PubMedGoogle Scholar
  26. 26.
    Sianos G, Barlis P, Di Mario C et al (2008) European experience with the retrograde approach for the recanalisation of coronary artery chronic total occlusions. A report on behalf of the euroCTO club. EuroIntervention 4:84–92PubMedCrossRefGoogle Scholar
  27. 27.
    Werner GS, Ferrari M, Heinke S et al (2003) Angiographic assessment of collateral connections in comparison with invasively determined collateral function in chronic coronary occlusions. Circulation 107:1972–1977PubMedCrossRefGoogle Scholar
  28. 28.
    Werner GS (2011) The BridgePoint devices to facilitate recanalization of chronic total coronary occlusions through controlled subintimal reentry. Expert Rev Med Devices 8:23–29PubMedCrossRefGoogle Scholar
  29. 29.
    Garcia-Garcia HM, Mieghem CA van, Gonzalo N et al (2009) Computed tomography in total coronary occlusions (CTTO registry): radiation exposure and predictors of successful percutaneous intervention. EuroIntervention 4:607–616PubMedCrossRefGoogle Scholar
  30. 30.
    Rolf A, Werner GS, Rixe J et al (2009) Preprocedural coronary computed tomography angiography significantly enhances success rates of PCI in complex chronic total occlusions. Circulation 120:S318, Abstract 312CrossRefGoogle Scholar
  31. 31.
    Hirokami M, Saito S, Muto H (2006) Anchoring technique to improve guiding catheter support in coronary angioplasty of chronic total occlusions. Catheter Cardiovasc Interv 67:366–371PubMedCrossRefGoogle Scholar
  32. 32.
    Erbel R, O’Neil W, Auth D et al (1989) High-frequency rotational atherectomy in coronary heart disease. Dtsch Med Wochenschr 114:487–495PubMedCrossRefGoogle Scholar
  33. 33.
    Werner GS, Bahrmann P, Mutschke O et al (2003) Determinants of target vessel failure in chronic total coronary occlusions after stent implantation. The influence of collateral function and coronary hemodynamics. J Am Coll Cardiol 42:219–225PubMedCrossRefGoogle Scholar
  34. 34.
    Stone GW, Reifart NJ, Moussa I et al (2005) Percutaneous recanalization of chronically occluded coronary arteries: a consensus document: part II. Circulation 112:2530–2537PubMedCrossRefGoogle Scholar
  35. 35.
    Hoye A, Tanabe K, Lemos PA et al (2004) Significant reduction in restenosis after the use of sirolimus-eluting stents in the treatment of chronic total occlusions. J Am Coll Cardiol 43:1954–1958PubMedCrossRefGoogle Scholar
  36. 36.
    Werner GS, Krack A, Schwarz G et al (2004) Prevention of lesion recurrence in chronic total coronary occlusions by paclitaxel-eluting stents. J Am Coll Cardiol 44:2301–2306PubMedCrossRefGoogle Scholar
  37. 37.
    Colmenarez HJ, Escaned J, Fernandez C et al (2010) Efficacy and safety of drug-eluting stents in chronic total coronary occlusion recanalization: a systematic review and meta-analysis. J Am Coll Cardiol 55:1854–1866PubMedCrossRefGoogle Scholar
  38. 38.
    Suttorp MJ, Laarman GJ, Rahel BM et al (2006) Primary Stenting of Totally Occluded Native Coronary Arteries II (PRISON II): a randomized comparison of bare metal stent implantation with sirolimus-eluting stent implantation for the treatment of total coronary occlusions. Circulation 114:921–928PubMedCrossRefGoogle Scholar
  39. 39.
    Rubartelli P, Petronio AS, Guiducci V et al (2010) Comparison of sirolimus-eluting and bare metal stent for treatment of patients with total coronary occlusions: results of the GISSOC II-GISE multicentre randomized trial. Eur Heart J 31:2014–2020PubMedGoogle Scholar
  40. 40.
    Reifart N, Hauptmann KE, Rabe A et al (2010) Short and long term comparison (24 months) of an alternative sirolimus-coated stent with bioabsorbable polymer and a bare metal stent of similar design in chronic coronary occlusions: the CORACTO trial. EuroIntervention 6:356–360PubMedCrossRefGoogle Scholar
  41. 41.
    Silber S, Borggrefe M, Böhm M et al (2007) Positionspapier der DGK zur Wirksamkeit und Sicherheit von Medikamente freisetzenden Koronarstents (DES). Kardiologe 1:84–111CrossRefGoogle Scholar
  42. 42.
    Werner GS, Schwarz G, Prochnau D et al (2005) Paclitaxel-eluting stents for the treatment of chronic total coronary occlusions: a strategy of extensive lesion coverage with drug-eluting stents. Catheter Cardiovasc Interv 67:1–9CrossRefGoogle Scholar
  43. 43.
    Werner GS (2010) A prospective nonradomized study of paclitaxel-eluting balloons after bare metal stent placement in successfully recanalized chronic total occlusions. TCT 2010Google Scholar
  44. 44.
    Stone GW, Colombo A, Teirstein PS et al (2005) Percutaneous recanalization of chronically occluded coronary arteries: procedural techniques, devices, and results. Catheter Cardiovasc Interv 66:217–236PubMedCrossRefGoogle Scholar
  45. 45.
    Stone GW, Rutherford BD, McConahay DR et al (1990) Procedural outcome of angioplasty for total coronary artery occlusion: an analysis of 971 lesions in 905 patients. J Am Coll Cardiol 15:849–856PubMedCrossRefGoogle Scholar
  46. 46.
    Gunning MG, Williams IL, Jewitt DE et al (2002) Coronary artery perforation during percutaneous intervention: incidence and outcome. Heart 88:495–498PubMedCrossRefGoogle Scholar
  47. 47.
    Mehran R, Aymong ED, Nikolsky E et al (2004) A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 44:1393–1399PubMedGoogle Scholar
  48. 48.
    Mager A, Assa HV, Lev EI et al (2010) The ratio of contrast volume to glomerular filtration rate predicts outcomes after percutaneous coronary intervention for ST-segment elevation acute myocardial infarction. Catheter Cardiovasc Interv [Epub ahead of print]Google Scholar
  49. 49.
    Suzuki S, Furui S, Isshiki T et al (2008) Methods to reduce patients’ maximum skin dose during percutaneous coronary intervention for chronic total occlusion. Catheter Cardiovasc Interv 71:792–798PubMedCrossRefGoogle Scholar
  50. 50.
    Hannan EL, Racz M, Holmes DR et al (2006) Impact of completeness of percutaneous coronary intervention revascularization on long-term outcomes in the stent era. Circulation 113:2406–2412PubMedCrossRefGoogle Scholar
  51. 51.
    Hannan EL, Wu C, Walford G et al (2009) Incomplete revascularization in the era of drug-eluting stents: impact on adverse outcomes. JACC Cardiovasc Interv 2:17–25PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel, Muenchen 2011

Authors and Affiliations

  1. 1.Medizinische Klinik I (Kardiologie & Intensivmedizin)Klinikum DarmstadtDarmstadtDeutschland

Personalised recommendations